Digital Pills with Ingestible Sensors: Patent Landscape Analysis
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Strategy on Digital Health 2020–2025; World Health Organization: Geneva, Switzerland, 2021.
- Knights, J.; Heidary, Z.; Cochran, J.M. Detection of Behavioral Anomalies in Medication Adherence Patterns Among Patients With Serious Mental Illness Engaged With a Digital Medicine System. JMIR Ment. Health 2020, 7, e21378. [Google Scholar] [CrossRef]
- Chai, P.R.; Carreiro, S.; Innes, B.J.; Rosen, R.K.; O’Cleirigh, C.; Mayer, K.H.; Boyer, E.W. Digital Pills to Measure Opioid Ingestion Patterns in Emergency Department Patients With Acute Fracture Pain: A Pilot Study. J. Med. Internet Res. 2017, 19, e19. [Google Scholar] [CrossRef] [PubMed]
- Chai, P.R.; Vaz, C.; Goodman, G.R.; Albrechta, H.; Huang, H.; Rosen, R.K.; Boyer, E.W.; Mayer, K.H.; O’Cleirigh, C. Ingestible electronic sensors to measure instantaneous medication adherence: A narrative review. Digit. Health 2022, 8, 205520762210831. [Google Scholar] [CrossRef] [PubMed]
- Cutler, R.L.; Fernandez-Llimos, F.; Frommer, M.; Benrimoj, C.; Garcia-Cardenas, V. Economic impact of medication non-adherence by disease groups: A systematic review. BMJ Open 2018, 8, e016982. [Google Scholar] [CrossRef] [PubMed]
- Martani, A.; Geneviève, L.D.; Poppe, C.; Casonato, C.; Wangmo, T. Digital pills: A scoping review of the empirical literature and analysis of the ethical aspects. BMC Med. Ethics 2020, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Alipour, A.; Gabrielson, S.; Patel, P.B. Ingestible Sensors and Medication Adherence: Focus on Use in Serious Mental Illness. Pharmacy 2020, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Digital Health Trends 2021. Innovation, Evidence, Regulation, and Adoption; IQVIA Institute for Human Data Science: Durham, NC, USA, 2021.
- Flore, J. Ingestible sensors, data, and pharmaceuticals: Subjectivity in the era of digital mental health. New Media Soc. 2021, 23, 2034–2051. [Google Scholar] [CrossRef]
- Shaun, J.; Tetsuro, K.; Katsura, T.; Tsuyoshi, H.; Yasufumi, U. 5-HT1a Receptor Subtype Agonist. U.S. Patent 7,053,092 B2, 30 May 2006. [Google Scholar]
- Mark, Z.; Timothy, R.; Aleksandr, P.; Hooman, H. Communication System with Partial Power Source. U.S. Patent 7,978,064 B2, 12 July 2011. [Google Scholar]
- Takuji, B.; Satoshi, A.; Junichi, K.; Makoto, I.; Youichi, T.; Tsuyoshi, Y.; Kiyoshi, F.; Yoshihiro, N.; Noriyuki, K.; Tsutomu, F.; et al. Low Hygroscopic Aripiprazole Drug Substance and Processes for the Preparation Thereof. U.S. Patent 8,017,615 B2, 13 September 2011. [Google Scholar]
- Timothy, R.; Fataneh, O.; Yashar, B.; Lawrence, A.; Kenneth, R.; James, H.; Robert, L.; George, S.; Andrew, T.; Mark, Z.; et al. Body-Associated Receiver and Method. U.S. Patent 8,114,021 B2, 14 February 2012. [Google Scholar]
- Robertson, T.; Zdeblick, M.J. Multi-Mode Communication Ingestible Event Markers and Systems, and Methods of Using the Same. U.S. Patent 8,258,962 B2, 4 September 2012. [Google Scholar]
- Hooman, H.; Kityee, A.-Y.; Robert, D.; Maria, H.; Timothy, R.; Benedict, C. Highly Reliable Ingestible Event Markers and Methods for Using the Same. U.S. Patent 8,545,402 B2, 1 October 2013. [Google Scholar]
- Mark, Z.; Timothy, R. Implantable Zero-Wire Communications System. U.S. Patent 8,547,248 B2, 1 October 2013. [Google Scholar]
- Takuji, B.; Satoshi, A.; Junichi, K.; Makoto, I.; Youichi, T.; Tsuyoshi, Y.; Kiyoshi, F.; Yoshihiro, N.; Noriyuki, K.; Tsutomu, F.; et al. Low Hygroscopic Aripiprazole Drug Substance and Processes for the Preparation Thereof. U.S. Patent 8,580,796 B2, 12 November 2013. [Google Scholar]
- Takuji, B.; Satoshi, A.; Junichi, K.; Makoto, I.; Youichi, T.; Tsuyoshi, Y.; Kiyoshi, F.; Yoshihiro, N.; Noriyuki, K.; Tsutomu, F.; et al. Low Hygroscopic Aripiprazole Drug Substance and Processes for the Preparation Thereof. U.S. Patent 8,642,760 B2, 4 February 2014. [Google Scholar]
- Mark, Z.; Andrew, T.; Aleksandr, P.; Timothy, R. Pharma-Informatics System. U.S. Patent 8,674,825 B2, 4 February 2014. [Google Scholar]
- Lawrence, A.; Kityee, A.-Y.; Kenneth, C.; Timothy, R. Active Signal Processing Personal Health Signal Receivers. U.S. Patent 8,718,193 B2, 6 May 2014. [Google Scholar]
- Tetsuro, K.; Taro, I.; Tsuyoshi, H. Carbostyril Derivatives and Serotonin Reuptake Inhibitors for Treatment of Mood Disorders. U.S. Patent 8,759,350 B2, 24 June 2014. [Google Scholar]
- Mark, Z.; Andrew, T.; Aleksandr, P.; Timothy, R.; Hooman, H. Pharma-Informatics System. U.S. Patent 8,847,766 B2, 30 September 2014. [Google Scholar]
- Hooman, H.; Timothy, R.; Olivier, C.; Mark, Z. Controlled Activation Ingestible Identifier. U.S. Patent 8,945,005 B2, 3 February 2015. [Google Scholar]
- Hooman, H.; Timothy, R.; Eric, S.; Brad, C. In-Body Power Source Having High Surface Area Electrode. U.S. Patent 8,956,288 B2, 17 February 2015. [Google Scholar]
- Hooman, H.; James, C.B.; Timothy, R.; Maria, C.H. In-Body Device with Virtual Dipole Signal Amplification. U.S. Patent 8,961,412 B2, 24 February 2015. [Google Scholar]
- Timothy, R.; Mark, Z. Multi-Mode Communication Ingestible Event Markers and Systems, and Methods of Using the Same. U.S. Patent 9,060,708 B2, 23 June 2015. [Google Scholar]
- Shaun, J.; Tetsuro, K.; Katsura, T.; Tsuyoshi, H.; Yasufumi, U. Method of Treating Cognitive Impairments and Schizophrenias. U.S. Patent 9,089,567 B2, 28 July 2015. [Google Scholar]
- Mark, Z.; Aleksandr, P.; Timothy, R.; Hooman, H. Pharma-Informatics System. U.S. Patent 9,119,554 B2, 1 September 2015. [Google Scholar]
- Tetsuro, K.; Taro, I.; Tsuyoshi, H. Carbostyril Derivatives and Mood Stabilizers for Treating Mood Disorders. U.S. Patent 9,125,939 B2, 8 September 2015. [Google Scholar]
- Timothy, R.; Fataneh, O.; Yashar, B.; Lawrence, A.; Kenneth, R.; James, H.; Robert, L.; George, S.; Andrew, T.; Mark, Z.; et al. Body-Associated Receiver and Method. U.S. Patent 9,149,577 B2, 6 October 2015. [Google Scholar]
- Timothy, R.; Mark, Z. Multi-Mode Communication Ingestible Event Markers and Systems, and Methods of Using the Same. U.S. Patent 9,258,035 B2, 9 February 2016. [Google Scholar]
- Nilay, J.; Douglas, W.; Jonathan, W.; Jeffrey, B.; Haifeng, L. Apparatus, System, and Method to Adaptively Optimize Power Dissipation and Broadcast Power in a Power Source for a Communication Device. U.S. Patent 9,268,909 B2, 23 February 2016. [Google Scholar]
- Hooman, H.; Kityee, A.-Y.; Robert, D.; Casillas, H.M.; Timothy, R.; James, C.B. Highly Reliable Ingestible Event Markers and Methods for Using the Same. U.S. Patent 9,320,455 B2, 26 April 2016. [Google Scholar]
- Takuji, B.; Satoshi, A.; Junichi, K.; Makoto, I.; Youichi, T.; Tsuyoshi, Y.; Kiyoshi, F.; Yoshihiro, N.; Noriyuki, K.; Tsutomu, F.; et al. Low Hygroscopic Aripiprazole Drug Substance and Processes for the Preparation Thereof. U.S. Patent 9,359,302 B2, 7 June 2016. [Google Scholar]
- Tetsuro, K.; Taro, I.; Tsuyoshi, H. Carbostyril Derivatives and Serotonin Reuptake Inhibitors for Treatment of Mood disorders. U.S. Patent 9,387,182 B2, 12 July 2016. [Google Scholar]
- Hooman, H.; Benedict, C.; Timothy, R.; Casillas, H.M. In-Body Device with Virtual Dipole Signal Amplification. U.S. Patent 9,433,371 B2, 9 September 2016. [Google Scholar]
- Lawrence, A.; Yee, A.-Y.K.; Kenneth, C.; Timothy, R. Active Signal Processing Personal Health Signal Receivers. U.S. Patent 9,444,503 B2, 13 September 2016. [Google Scholar]
- Mark, Z. System for Supply Chain Management. U.S. Patent 9,941,931 B2, 10 April 2018. [Google Scholar]
- Timothy, R.; George, S.; Mark, Z.; Yashar, B.; Benedict, C.; Jeremy, F.; Hooman, H.; Tariq, H.; David, O. Ingestible Event Marker Systems. U.S. Patent 10,441,194 B2, 15 October 2019. [Google Scholar]
- Jeremy, F.; Peter, B.; Hooman, H.; Robert, A.; Robert, D.; Iliya, P.; Benedict, C.; Eric, S. Communication System with Enhanced Partial Power Source and Method of Manufacturing Same. U.S. Patent 10,517,507 B2, 31 December 2019. [Google Scholar]
- Jeremy, F.; Peter, B.; Hooman, H.; Robert, A.; Robert, D.; Iliya, P.; Benedict, C.; Eric, S. Communication System with Enhanced Partial Power Source and Method of Manufacturing Same. U.S. Patent 11,229,378 B2, 25 January 2022. [Google Scholar]
- From Big Deals to Bankruptcy, a Digital Health Unicorn Falls Short. Here’s What Other Startups Can Learn from Proteus. Available online: https://www.fiercehealthcare.com/tech/from-billions-to-bankruptcy-proteus-digital-health-fell-short-its-promise-here-s-what-other (accessed on 4 July 2022).
- Velligan, D.I.; Sajatovic, M.; Hatch, A.; Kramata, P.; Docherty, J. Why do psychiatric patients stop antipsychotic medication? A systematic review of reasons for nonadherence to medication in patients with serious mental illness. Patient Prefer. Adherence 2017, 11, 449–468. [Google Scholar] [CrossRef]
- Kane, J.M.; Perlis, R.H.; DiCarlo, L.A.; Au-Yeung, K.; Duong, J.; Petrides, G. First experience with a wireless system incorporating physiologic assessments and direct confirmation of digital tablet ingestions in ambulatory patients with schizophrenia or bipolar disorder. J. Clin. Psychiatry 2013, 74, e533–e540. [Google Scholar] [CrossRef]
- Fowler, J.C.; Cope, N.; Knights, J.; Phiri, P.; Makin, A.; Peters-Strickland, T.; Rathod, S. Hummingbird Study: A study protocol for a multicentre exploratory trial to assess the acceptance and performance of a digital medicine system in adults with schizophrenia, schizoaffective disorder or first-episode psychosis. BMJ Open 2019, 9, e025952. [Google Scholar] [CrossRef]
- Rohatagi, S.; Profit, D.; Hatch, A.; Zhao, C.; Docherty, J.P.; Peters-Strickland, T.S. Optimization of a Digital Medicine System in Psychiatry. J. Clin. Psychiatry 2016, 77, e1101–e1107. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Delpech, V. The HIV epidemic: Global and United Kingdom trends. Medicine 2022, 50, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Measuring and Monitoring Adherence to ART with Pill Ingestible Sensor System. ClinicalTrials.gov Identifier: NCT02797262. Updated 20 December 2021. Available online: https://clinicaltrials.gov/ct2/show/results/NCT02797262?term=NCT02797262&draw=2&rank=1 (accessed on 4 July 2022).
- Feasibility of an Ingestible Sensor System to Measure PrEP Adherence in YMSM. ClinicalTrials.gov Identifier: NCT02891720. Updated 7 September 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT02891720?term=NCT02891720&draw=2&rank=1 (accessed on 4 July 2022).
- DHFS for Medication Adherence Support During Hospital Admissions for Person Living with HIV. ClinicalTrials.gov Identifier: NCT04418037. Updated 25 August 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04418037?term=NCT04418037&draw=2&rank=1 (accessed on 4 July 2022).
- Digital Health Feedback System (DHFS) for Longitudinal Monitoring of ARVs Used in HIV Pre-Exposure Prophylaxis (PrEP). ClinicalTrials.gov Identifier: NCT03693040. Updated 25 August 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT03693040?term=NCT03693040&draw=2&rank=1 (accessed on 4 July 2022).
- Euliano Neil, R.; Myers Brent, A.; Principe Jose, C.; Meka Venkata, V.; Flores, G. Electronic Medication Compliance Monitoring System and Associated Methods. U.S. Patent 9,743,880 B1, 29 August 2017. [Google Scholar]
- Quantification of Tenofovir Alafenamide Adherence (QUANTI-TAF). ClinicalTrials.gov Identifier: NCT04065347. Updated 25 April 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04065347?term=NCT04065347&draw=2&rank=1 (accessed on 4 July 2022).
- Chai, P.R.; Goodman, G.R.; Bronzi, O.; Gonzales, G.; Baez, A.; Bustamante, M.J.; Najarro, J.; Mohamed, Y.; Sullivan, M.C.; Mayer, K.H.; et al. Real-World User Experiences with a Digital Pill System to Measure PrEP Adherence: Perspectives from MSM with Substance Use. AIDS Behav. 2022, 26, 2459–2468. [Google Scholar] [CrossRef]
- Mills, S.E.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth. 2019, 123, e273–e283. [Google Scholar] [CrossRef]
- Sippy, B.C. Ingestible Product and a Method of Using the Same. U.S. Patent 20210244672 A1, 28 April 2021. [Google Scholar]
- S1916 Digital Medicine Program for Pain Control in Cancer Patients. ClinicalTrials.gov identifier: NCT04194528. Updated 10 December 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04194528?term=NCT04194528&draw=2&rank=1 (accessed on 4 July 2022).
- Pless Benjamin, D.; Bacher, D. Opioid Overdose Rescue Device. CA Patent 3149412 A1, 4 March 2021. [Google Scholar]
- Brouwers, S.; Sudano, I.; Kokubo, Y.; Sulaica, E.M. Arterial hypertension. Lancet 2021, 398, 249–261. [Google Scholar] [CrossRef]
- Godbehere, P.; Wareing, P. Hypertension assessment and management: Role for digital medicine. J. Clin. Hypertens. 2014, 16, 235. [Google Scholar] [CrossRef]
- Kurt, S.; Nikhil, P.; Chris, D.; Ling, C.A.; Dawn, A. Lisinopril Compositions with an Ingestible Event Marker. WO Patent 2018200691 A3, 3 January 2018. [Google Scholar]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Frias, J.; Virdi, N.; Raja, P.; Kim, Y.; Savage, G.; Osterberg, L. Effectiveness of Digital Medicines to Improve Clinical Outcomes in Patients with Uncontrolled Hypertension and Type 2 Diabetes: Prospective, Open-Label, Cluster-Randomized Pilot Clinical Trial. J. Med. Internet Res. 2017, 19, e246. [Google Scholar] [CrossRef]
- Mir, I. Therapeutic Agent Preparations for Delivery into a Lumen of the Intestinal Tract Using a Swallowable Drug Delivery Device. CA Patent 2840617 C, 24 March 2020. [Google Scholar]
- Albrecht, L.-W. Ingestible Device for Measuring Glucose Concentration. EP Patent 3108810 A1, 28 December 2016. [Google Scholar]
- Kalantar-zadeh, K.; Ha, N.; Ou, J.Z.; Berean, K.J. Ingestible Sensors. ACS Sens. 2017, 2, 468–483. [Google Scholar] [CrossRef]
- Lawrence, J.M.; Sharat, S.; Loren, W.C.; Harry, S. Treatment of a Disease of the Gastrointestinal Tract with an Immunosuppressant. WO Patent 2018112255 A1, 21 June 2018. [Google Scholar]
- Lawrence, J.M.; Sharat, S.; Loren, W.C.; Harry, S. Treatment of a Disease of the Gastrointestinal Tract with a TNF Inhibitor. WO Patent 2018112240 A1, 21 June 2018. [Google Scholar]
- Lawrence, J.M.; Sharat, S.; Loren, W.C.; Harry, S. Treatment of a Disease of the Gastrointestinal Tract with an IL-6R Inhibitor. WO Patent 2018/112237 A1, 21 June 2018. [Google Scholar]
- Lawrence, J.M.; Sharat, S.; Loren, W.C.; Harry, S. Treatment of a Disease of the Gastrointestinal Tract with an Il-12/Il-23 Inhibitor Released Using an Ingestible Device. WO Patent 2018112232 A1, 21 June 2018. [Google Scholar]
- Lawrence, J.M.; Sharat, S.; Loren, W.C.; Harry, S. Methods and Ingestible Devices for the Regio-Specific Release of IL-1 Inhibitors at the Site of Gastrointestinal Tract Disease. WO Patent 2018111329 A1, 21 June 2018. [Google Scholar]
- Lawrence, J.M.; Alain, L.; Sasha, D.M.; Terry, P.M.C. Electromechanical Pill Device with Localization Capabilities. EP Patent 3197336 B1, 23 December 2020. [Google Scholar]
- Akio, U.; Hironobu, T.; Hidetake, S.; Hironao, K. Capsule Medication Administration System, Medication Administration Method Using Capsule Medication Administration System, Control Method for Capsule Medication administration System. U.S. Patent 8,021,356 B2, 20 September 2011. [Google Scholar]
- Semler, J.R. Method of Locating an Ingested Capsule. U.S. Patent 20120209083 A1, 16 August 2012. [Google Scholar]
- Lynch, S.M.; Wu, G.Y. Hepatitis C Virus: A Review of Treatment Guidelines, Cost-effectiveness, and Access to Therapy. J. Clin. Transl. Hepatol. 2016, 4, 310–319. [Google Scholar] [CrossRef]
- Digimeds to Optimize Adherence in Patients with Hepatitis C and Increased Risk for Nonadherence. ClinicalTrials.gov Identifier: NCT03164902. Updated 13 December 2018. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03164902?term=NCT03164902&draw=2&rank=1 (accessed on 4 July 2022).
- Desai, A.; Gyawali, B. Financial toxicity of cancer treatment: Moving the discussion from acknowledgement of the problem to identifying solutions. EClinicalMedicine 2020, 20, 100269. [Google Scholar] [CrossRef]
- A Digimed Oncology PharmacoTherapy Registry (ADOPTR). ClinicalTrials.gov Identifier: NCT04088955. Updated 11 March 2020. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04088955?term=NCT04088955&draw=2&rank=1 (accessed on 4 July 2022).
- Singh Dewhare, S. Drug resistant tuberculosis: Current scenario and impending challenges. Indian J. Tuberc. 2022, 69, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Browne, S.H.; Umlauf, A.; Tucker, A.J.; Low, J.; Moser, K.; Gonzalez Garcia, J.; Peloquin, C.A.; Blaschke, T.; Vaida, F.; Benson, C.A. Wirelessly observed therapy compared to directly observed therapy to confirm and support tuberculosis treatment adherence: A randomized controlled trial. PLoS Med. 2019, 16, e1002891. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Nassetta, K.; O’Dwyer, L.C.; Wilcox, J.E.; Badawy, S.M. Adherence to immunosuppression in adult heart transplant recipients: A systematic review. Transplant. Rev. 2021, 35, 100651. [Google Scholar] [CrossRef]
- Gandolfini, I.; Palmisano, A.; Fiaccadori, E.; Cravedi, P.; Maggiore, U. Detecting, preventing and treating non-adherence to immunosuppression after kidney transplantation. Clin. Kidney J. 2022, 15, 1253–1274. [Google Scholar] [CrossRef] [PubMed]
- Eisenberger, U.; Wüthrich, R.P.; Bock, A.; Ambühl, P.; Steiger, J.; Intondi, A.; Kuranoff, S.; Maier, T.; Green, D.; DiCarlo, L.; et al. Medication adherence assessment: High accuracy of the new Ingestible Sensor System in kidney transplants. Transplantation 2013, 96, 245–250. [Google Scholar] [CrossRef]
US Patent No. | Patent Expiration | The Title of the Invention, the Owners |
---|---|---|
7053092 | 28/01/2022 | 5HT1a Receptor subtype agonist [10] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
7978064 | 14/09/2026 | Communication system with partial power source [11] Proteus Biomedical, Inc. (Redwood City, CA, USA) |
8017615 | 16/06/2024 | Low hygroscopic aripiprazole drug substance and processes for the preparation thereof [12] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
8114021 | 21/06/2030 | Body-associated receiver and method [13] Proteus Biomedical, Inc. (Redwood City, CA, USA) |
8258962 | 25/11/2030 | Multi-mode communication ingestible event markers and systems, and methods of using the same [14] Proteus Biomedical, Inc. (Redwood City, CA, USA) |
8545402 | 27/04/2030 | Highly reliable ingestible event markers and methods for using the same [15] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8547248 | 18/12/2030 | Implantable zero-wire communications system [16] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8580796 | 25/09/2022 | Low hygroscopic aripiprazole drug substance and processes for the preparation thereof [17] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
8642760 | 25/09/2022 | Low hygroscopic aripiprazole drug substance and processes for the preparation thereof [18] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
8674825 | 09/04/2029 | Pharma-informatics system [19] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8718193 | 05/12/2029 | Active signal processing personal health signal receivers [20] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8759350 | 02/03/2027 | Carbostyril derivatives and serotonin reuptake inhibitors for treatment of mood disorders [21] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
8847766 | 29/03/2030 | Pharma-informatics system [22] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8945005 | 19/08/2029 | Controlled activation ingestible identifier [23] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8956288 | 06/07/2029 | In-body power source having high surface area electrode [24] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8961412 | 17/11/2030 | In-body device with virtual dipole signal amplification [25] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9060708 | 05/03/2029 | Multi-mode communication ingestible event markers and systems, and methods of using the same [26] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9089567 | 28/01/2022 | Method of treating cognitive impairments and schizophrenias [27] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
9119554 | 16/12/2028 | Pharma-informatics system [28] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9125939 | 28/07/2026 | Carbostyril derivatives and mood stabilizers for treating mood disorders [29] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
9149577 | 15/12/2029 | Body-associated receiver and method [30] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9258035 | 05/03/2029 | Multi-mode communication ingestible event markers and systems, and methods of using the same [31] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9268909 | 15/10/2033 | Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device [32] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9320455 | 15/12//2031 | Highly reliable ingestible event markers and methods for using the same [33] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9359302 | 25/09/2022 | Low hygroscopic aripiprazole drug substance and processes for the preparation thereof [34] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
9387182 | 25/12/2023 | Carbostyril derivatives and serotonin reuptake inhibitors for treatment of mood disorders [35] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
9433371 | 15/09/2029 | In-body device with virtual dipole signal amplification [36] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9444503 | 19/11/2027 | Active signal processing personal health signal receivers [37] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9941931 | 04/11/2030 | System for supply chain management [38] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
10441194 | 26/07/2029 | Ingestible event marker systems [39] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
10517507 | 13/06/2032 | Communication system with enhanced partial power source and method of manufacturing same [40] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
11229378 | 11/07/2031 | Communication system with enhanced partial power source and method of manufacturing same [41] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
Code | Meaning |
---|---|
International Patent Classification | |
A61B5/00 | Measuring for diagnostic purposes radiation diagnosis by ultrasonic, sonic, or infrasonic waves. Identification of persons |
A61B5/07 | Endoradiosondes |
A61B5/145 | Measuring characteristics of blood in vivo, e.g., gas concentration, pH-value measuring of blood pressure or blood flow non-radiation detecting or locating of foreign bodies in blood |
A61K9/00 | Medicinal preparations characterized by special physical form |
Cooperative Patent Classification | |
A61B5/073 | Intestinal transmitters |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litvinova, O.; Klager, E.; Tzvetkov, N.T.; Kimberger, O.; Kletecka-Pulker, M.; Willschke, H.; Atanasov, A.G. Digital Pills with Ingestible Sensors: Patent Landscape Analysis. Pharmaceuticals 2022, 15, 1025. https://doi.org/10.3390/ph15081025
Litvinova O, Klager E, Tzvetkov NT, Kimberger O, Kletecka-Pulker M, Willschke H, Atanasov AG. Digital Pills with Ingestible Sensors: Patent Landscape Analysis. Pharmaceuticals. 2022; 15(8):1025. https://doi.org/10.3390/ph15081025
Chicago/Turabian StyleLitvinova, Olena, Elisabeth Klager, Nikolay T. Tzvetkov, Oliver Kimberger, Maria Kletecka-Pulker, Harald Willschke, and Atanas G. Atanasov. 2022. "Digital Pills with Ingestible Sensors: Patent Landscape Analysis" Pharmaceuticals 15, no. 8: 1025. https://doi.org/10.3390/ph15081025
APA StyleLitvinova, O., Klager, E., Tzvetkov, N. T., Kimberger, O., Kletecka-Pulker, M., Willschke, H., & Atanasov, A. G. (2022). Digital Pills with Ingestible Sensors: Patent Landscape Analysis. Pharmaceuticals, 15(8), 1025. https://doi.org/10.3390/ph15081025