In the Search for Novel, Isoflavone-Rich Functional Foods—Comparative Studies of Four Clover Species Sprouts and Their Chemopreventive Potential for Breast and Prostate Cancer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Four Clover Species Sprouts Differ in Their Isoflavones Profile
2.2. Different Pattern in Isoflavones Accumulation Dynamics among the Tested Sprouts
2.3. Comparison of Cytotoxic Potential of Four Clover Species Sprouts
2.3.1. Impact of the Tested Sprouts on Viability of Breast Cancer and Normal Cells
2.3.2. Impact of the Tested Sprouts on Viability of Prostate Cancer and Normal Cells
2.4. Antioxidant Potential of Clover Sprouts Not Always Corresponds with Isoflavones Amount
2.5. Chemometric Analysis Reveals Some Relationships between the Studied Factors
3. Materials and Methods
3.1. Reagents
3.2. Plant Material
3.3. Preparation of Extracts and Quantitative Analysis
3.4. Determination of the Antioxidant Capacities
3.5. Cell Cultures and Viability Assay
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grela, E.R.; Kiczorowska, B.; Samolińska, W.; Matras, J.; Kiczorowski, P.; Rybiński, W.; Hanczakowska, E. Chemical composition of leguminous seeds: Part I—content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. Eur. Food Res. Technol. 2017, 243, 1385–1395. [Google Scholar] [CrossRef]
- Basu, P.; Maier, C. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed. Pharmacother. 2018, 107, 1648–1666. [Google Scholar] [CrossRef] [PubMed]
- Hajirahimkhan, A.; Dietz, B.M.; Bolton, J.L. Botanical Modulation of Menopausal Symptoms: Mechanisms of Action? Planta Med. 2013, 79, 538–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecomte, S.; Demay, F.; Ferrière, F.; Pakdel, F. Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? Int. J. Mol. Sci. 2017, 18, 1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivoňová, M.K.; Kaplán, P.; Tatarková, Z.; Lichardusová, L.; Dušenka, R.; Jurečeková, J. Androgen receptor and soy isoflavones in prostate cancer. Mol. Clin. Oncol. 2019, 10, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Applegate, C.C.; Rowles, J.L.; Ranard, K.M.; Jeon, S.; Erdman, J.W. Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients 2018, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Perez-Cornago, A.; Appleby, P.N.; Boeing, H.; Gil, L.; Kyrø, C.; Ricceri, F.; Murphy, N.; Trichopoulou, A.; Tsilidis, K.K.; Khaw, K.-T.; et al. Circulating isoflavone and lignan concentrations and prostate cancer risk: A meta-analysis of individual participant data from seven prospective studies including 2,828 cases and 5,593 controls. Int. J. Cancer 2018, 143, 2677–2686. [Google Scholar] [CrossRef]
- Zhao, T.-T.; Jin, F.; Li, J.-G.; Xu, Y.; Dong, H.-T.; Liu, Q.; Xing, P.; Zhu, G.-L.; Xu, H.; Miao, Z.-F. Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: A meta-analysis of prospective cohort studies. Clin. Nutr. 2019, 38, 136–145. [Google Scholar] [CrossRef]
- Paśko, P.; Galanty, A.; Tyszka-Czochara, M.; Żmudzki, P.; Zagrodzki, P.; Gdula-Argasińska, J.; Prochownik, E.; Gorinstein, S. Health Promoting vs Anti-nutritive Aspects of Kohlrabi Sprouts, a Promising Candidate for Novel Functional Food. Plant Foods Hum. Nutr. 2021, 76, 76–82. [Google Scholar] [CrossRef]
- Budryn, G.; Gałązka-Czarnecka, I.; Brzozowska, E.; Grzelczyk, J.; Mostowski, R.; Żyżelewicz, D.; Cerón-Carrasco, J.P.; Pérez-Sánchez, H. Evaluation of estrogenic activity of red clover (Trifolium pratense L.) sprouts cultivated under different conditions by content of isoflavones, calorimetric study and molecular modelling. Food Chem. 2018, 245, 324–336. [Google Scholar] [CrossRef]
- Butkutė, B.; Taujenis, L.; Norkevičienė, E. Small-Seeded Legumes as a Novel Food Source. Variation of Nutritional, Mineral and Phytochemical Profiles in the Chain: Raw Seeds-Sprouted Seeds-Microgreens. Molecules 2018, 24, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiriac, E.R.; Chiţescu, C.L.; Borda, D.; Lupoae, M.; Gird, C.E.; Geană, E.-I.; Blaga, G.-V.; Boscencu, R. Comparison of the Polyphenolic Profile of Medicago sativa L. and Trifolium pratense L. Sprouts in Different Germination Stages Using the UHPLC-Q Exactive Hybrid Quadrupole Orbitrap High-Resolution Mass Spectrometry. Molecules 2020, 25, 2321. [Google Scholar] [CrossRef] [PubMed]
- Boué, S.M.; Wiese, T.E.; Nehls, S.; Burow, M.E.; Elliott, S.; Carter-Wientjes, C.H.; Shih, B.Y.; McLachlan, J.A.; Cleveland, T.E. Evaluation of the Estrogenic Effects of Legume Extracts Containing Phytoestrogens. J. Agric. Food Chem. 2003, 51, 2193–2199. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, P.; Rasini, E.; Luini, A.; Legnaro, M.; Luzzani, M.; Casareto, E.; Carreri, M.; Paracchini, S.; Marino, F.; Cosentino, M. Isoflavone content and estrogenic activity of different batches of red clover (Trifolium pratense L.) extracts: An in vitro study in MCF-7 cells. Fitoterapia 2014, 94, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Zakłos-Szyda, M.; Budryn, G. The Effects of Trifolium pratense L. Sprouts’ Phenolic Compounds on Cell Growth and Migration of MDA-MB-231, MCF-7 and HUVEC Cells. Nutrients 2020, 12, 257. [Google Scholar] [CrossRef] [Green Version]
- Shirvani, A.; Goli, S.A.H.; Shahedi, M.; Soleimanian-Zad, S. Changes in nutritional value and application of thyme (Thymus vulgaris) essential oil on microbial and organoleptic markers of Persian clover (Trifolium resupinatum) sprouts. LWT 2016, 67, 14–21. [Google Scholar] [CrossRef]
- Sayyed-Alangi, S.Z.; Nematzadeh, M. Formulation, development and evaluation of bifunctionalized nanoliposomes containing Trifolium resupinatum sprout methanolic extract: As effective natural antioxidants on the oxidative stability of soybean oil. BMC Chem. 2019, 13, 77. [Google Scholar] [CrossRef]
- Suberu, J.O.; Romero-Canelón, I.; Sullivan, N.; Lapkin, A.A.; Barker, G.C. Comparative Cytotoxicity of Artemisinin and Cisplatin and Their Interactions with Chlorogenic Acids in MCF7 Breast Cancer Cells. ChemMedChem 2014, 9, 2791–2797. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.L.; Lin, C.S.; Kao, S.H.; Chou, M.C. Gallic acid induces G1 phase arrest and apoptosis of triple-negative breast cancer cell MDA-MB-231 via p38 mitogen-activated protein kinase/p21/p27 axis. Anti-Cancer Drugs 2017, 28, 1150–1156. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, X.; Zhang, K.; Zhu, L.; Zhou, F. Investigation of Gallic Acid Induced Anticancer Effect in Human Breast Carcinoma MCF-7 Cells. J. Biochem. Mol. Toxicol. 2014, 28, 387–393. [Google Scholar] [CrossRef]
- Zeng, A.; Liang, X.; Zhu, S.; Liu, C.; Wang, S.; Zhang, Q.; Zhao, J.; Song, L. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF-κB signaling pathway. Oncol. Rep. 2021, 45, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Charles, C.; Fennell, H. Anti-Prostate Cancer Activity of Plant-Derived Bioactive Compounds: A Review. Curr. Mol. Biol. Rep. 2019, 5, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Souza, L.D.S.D.; Horta, I.P.C.; Rosa, L.D.S.; Lima, L.G.B.; da Rosa, J.S.; Montenegro, J.; Santos, L.D.S.; de Castro, R.B.N.; Freitas-Silva, O.; Teodoro, A.J. Effect of the roasting levels of Coffea arabica L. extracts on their potential antioxidant capacity and antiproliferative activity in human prostate cancer cells. RSC Adv. 2020, 10, 30115–30126. [Google Scholar] [CrossRef]
- Tuli, H.S.; Mistry, H.; Kaur, G.; Aggarwal, D.; Garg, V.K.; Mittal, S.; Yerer, M.B.; Sak, K.; Khan, A. Gallic acid: A dietary polyphenol that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Anti-Cancer Agents Med. Chem. 2022, 22, 499–514. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kasparovska, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; DELLA-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, A.; Alladin, K.P.; Igbokwe, O.; White, J.D. Systematic Review: Generating Evidence-Based Guidelines on the Concurrent Use of Dietary Antioxidants and Chemotherapy or Radiotherapy. Cancer Investig. 2011, 29, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Chiriac, E.R.; Chiţescu, C.L.; Sandru, C.; Geană, E.-I.; Lupoae, M.; Dobre, M.; Borda, D.; Gird, C.E.; Boscencu, R. Comparative Study of the Bioactive Properties and Elemental Composition of Red Clover (Trifolium pratense) and Alfalfa (Medicago sativa) Sprouts during Germination. Appl. Sci. 2020, 10, 7249. [Google Scholar] [CrossRef]
- Paśko, P.; Galanty, A.; Zagrodzki, P.; Żmudzki, P.; Bieniek, U.; Prochownik, E.; Domínguez-Álvarez, E.; Bierła, K.; Łobiński, R.; Szpunar, J.; et al. Varied effect of fortification of kale sprouts with novel organic selenium compounds on the synthesis of sulphur and phenolic compounds in relation to cytotoxic, antioxidant and anti-inflammatory activity. Microchem. J. 2022, 179, 107509. [Google Scholar] [CrossRef]
- Grudzińska, M.; Paśko, P.; Wróbel-Biedrawa, D.; Podolak, I.; Galanty, A. Antimelanoma Potential of Cladonia mitis Acetone Extracts—Comparative in Vitro Studies in Relation to Usnic Acid Content. Chem. Biodivers. 2022, e202200408. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zhang, Y.J.; Zhu, G.Y.; Shi, X.C.; Chen, X.; Herrera-Balandrano, D.D.; Liu, F.Q.; Laborda, P. Occurrence of isoflavones in soybean sprouts and strategies to enhance their content: A review. J. Food Sci. 2022, 87, 1961–1982. [Google Scholar] [CrossRef] [PubMed]
- Plaza, L.; de Ancos, B.; Cano, P.M. Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum. L) and alfalfa (Medicago sativa) treated by a new drying method. Eur. Food Res. Technol. 2003, 216, 138–144. [Google Scholar] [CrossRef]
RCS | RC3 | RC5 | RC7 | RC10 | WCS | WC3 | WC5 | WC7 | WC10 | PCS | PC3 | PC5 | PC7 | PC10 | CCS | CC3 | CC5 | CC7 | CC10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ISOFLAVONE GLYCOSIDES [mg/100 g dw, n = 3] | |||||||||||||||||||
daidzin | |||||||||||||||||||
Tr | 2.81 ± 0.08 | 8.46 ± 0.12 | 5.52 ± 0.40 | 18.58 ± 1.40 | Tr | Tr | Tr | Tr | Tr | Tr | 1.47 ± 0.42 | 1.22 ± 0.05 | 0.99 ± 0.13 | 0.60 ± 0.08 | Tr | Tr | Tr | Tr | Tr |
ononin | |||||||||||||||||||
Tr | 193 ± 6 | 191 ± 3 | 229 ± 5 | 332 ± 10 | Tr | 11.87 ± 0.32 | 15.24 ± 0.35 | 19.93 ± 0.20 | Tr | Tr | 37.91 ± 4.48 | 32.18 ± 5.68 | 37.22 ± 0.64 | 21.95 ± 0.38 | Tr | Tr | Tr | Tr | Tr |
ISOFLAVONE AGLYCONES [mg/100 g dw, n = 3] | |||||||||||||||||||
daidzein | |||||||||||||||||||
Tr | Tr | Tr | Tr | Tr | Tr | Tr | Tr | Tr | Tr | 0.13 ± 0.00 | 1.62 ± 0.20 | 1.16 ± 0.05 | 1.03 ± 0.06 | 0.68 ± 0.03 | Tr | Tr | Tr | Tr | Tr |
formononetin | |||||||||||||||||||
Tr | 5.97 ± 0.04 | 77.69 ± 2.39 | 34.96 ± 0.76 | 60.45 ± 1.39 | Tr | 27.12 ± 1.60 | 27.68 ± 0.68 | 28.19 ± 0.86 | 12.92 ± 0.39 | Tr | 3.79 ± 0.36 | 3.37 ± 0.35 | 3.14 ± 0.64 | 1.56 ± 0.04 | 0.07 ± 0.03 | 19.80 ± 1.98 | 14.82 ± 2.48 | 11.57 ± 0.44 | 7.98 ± 0.42 |
genistein | |||||||||||||||||||
Tr | 2.10 ± 0.14 | 6.00 ± 0.15 | 7.98 ± 0.20 | 15.12 ± 0.32 | Tr | Tr | Tr | Tr | Tr | 0.13 ± 0.01 | 2.42 ± 0.10 | 1.28 ± 0.08 | 0.94 ± 0.07 | 0.57 ± 0.04 | 0.07 ± 0.03 | 3.51 ± 0.62 | 2.90 ± 0.73 | 3.75 ± 0.89 | 9.75 ± 1.25 |
ANTIOXIDANT ACTIVITY FRAP [µM/ Fe2 + /g dw, n = 3] | |||||||||||||||||||
1.23 ± 0.16 | 44.60 ± 2.71 | 63.50 ± 1.30 | 33.87 ± 1.60 | 65.08 ± 3.16 | 1.17 ± 0.18 | 13.55 ± 0.92 | 29.53 ± 1.12 | 17.45 ± 0.78 | 31.54 ± 1.36 | 1.40 ± 0.17 | 26.00 ± 2.83 | 59.35 ± 2.06 | 28.44 ± 2.20 | 51.56 ± 1.62 | 1.03 ± 0.25 | 9.48 ± 1.02 | 23.47 ± 1.04 | 20.33 ± 0.96 | 29.10 ± 1.28 |
ANTIOXIDANT ACTIVITY DPPH [µM Trolox/g dw, n = 3] | |||||||||||||||||||
0.29 ± 0.02 | 5.85 ± 0.24 | 9.65 ± 0.99 | 6.98 ± 0.31 | 13.88 ± 1.30 | 0.54 ± 0.10 | 17.88 ± 1.02 | 24.92 ± 1.26 | 11.65 ± 0.96 | 25.74 ± 1.57 | 0.32 ± 0.05 | 3.05 ± 0.22 | 5.05 ± 0.22 | 3.60 ± 0.29 | 7.28 ± 0.32 | 0.24 ± 0.09 | 2.04 ± 0.09 | 3.09 ± 0.16 | 2.78 ± 0.17 | 4.11 ± 0.14 |
RCS | RC3 | RC5 | RC7 | RC10 | WCS | WC3 | WC5 | WC7 | WC10 | PCS | PC3 | PC5 | PC7 | PC10 | CCS | CC3 | CC5 | CC7 | CC10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PANEL OF BREAST CELLS | |||||||||||||||||||
MCF10A | |||||||||||||||||||
↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | 440.6 | ↑ | ↑ | ↑ | 331.4 | 315.7 |
MCF7 | |||||||||||||||||||
↑ | ↑ | ↑ | ↑ | ↑ | ↑ | 352.2 | ↑ | ↑ | ↑ | 352.2 | 153.4 | 61.1 | 361.3 | 71.3 | ↑ | ↑ | ↑ | 58.9 | 61.1 |
MDA-MB-231 | |||||||||||||||||||
↑ | ↑ | ↑ | ↑ | ↑ | ↑ | 457.5 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | 412.9 | ↑ | ↑ | ↑ | 224.9 | 56.7 |
PANEL OF PROSTATE CELLS | |||||||||||||||||||
PNT2 | |||||||||||||||||||
↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | 315 | ↑ | 429.1 | ↑ | ↑ | 481.4 | 237.9 | 119.5 |
DU145 | |||||||||||||||||||
430.5 | ↑ | 482.3 | ↑ | 488.6 | ↑ | ↑ | ↑ | 401.9 | 355 | ↑ | 117.9 | ↑ | ↑ | 261.1 | ↑ | ↑ | ↑ | 190.3 | 176.4 |
PC3 | |||||||||||||||||||
226.7 | 269.8 | 248.9 | 243.6 | 206.3 | 297.6 | 293.4 | 351.7 | 298.1 | 286.5 | ↑ | 203.1 | 324.9 | 415.9 | 187.6 | ↑ | 272.2 | ↑ | 72.2 | 32.9 |
LNCaP | |||||||||||||||||||
↑ | 192.7 | 263.5 | 165.3 | 190.2 | ↑ | 354.5 | 260.7 | 189.3 | 239.4 | ↑ | 70.6 | 83.4 | 213.7 | 188.1 | ↑ | 37.6 | 95.8 | 234.0 | 153.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galanty, A.; Niepsuj, M.; Grudzińska, M.; Zagrodzki, P.; Podolak, I.; Paśko, P. In the Search for Novel, Isoflavone-Rich Functional Foods—Comparative Studies of Four Clover Species Sprouts and Their Chemopreventive Potential for Breast and Prostate Cancer. Pharmaceuticals 2022, 15, 806. https://doi.org/10.3390/ph15070806
Galanty A, Niepsuj M, Grudzińska M, Zagrodzki P, Podolak I, Paśko P. In the Search for Novel, Isoflavone-Rich Functional Foods—Comparative Studies of Four Clover Species Sprouts and Their Chemopreventive Potential for Breast and Prostate Cancer. Pharmaceuticals. 2022; 15(7):806. https://doi.org/10.3390/ph15070806
Chicago/Turabian StyleGalanty, Agnieszka, Monika Niepsuj, Marta Grudzińska, Paweł Zagrodzki, Irma Podolak, and Paweł Paśko. 2022. "In the Search for Novel, Isoflavone-Rich Functional Foods—Comparative Studies of Four Clover Species Sprouts and Their Chemopreventive Potential for Breast and Prostate Cancer" Pharmaceuticals 15, no. 7: 806. https://doi.org/10.3390/ph15070806
APA StyleGalanty, A., Niepsuj, M., Grudzińska, M., Zagrodzki, P., Podolak, I., & Paśko, P. (2022). In the Search for Novel, Isoflavone-Rich Functional Foods—Comparative Studies of Four Clover Species Sprouts and Their Chemopreventive Potential for Breast and Prostate Cancer. Pharmaceuticals, 15(7), 806. https://doi.org/10.3390/ph15070806