Effectiveness and Cost-Effectiveness Profile of Second-Line Treatments with Nivolumab, Pembrolizumab and Atezolizumab in Patients with Advanced Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Results
2.1. Survival Analysis
2.2. Healthcare Costs
3. Discussion
4. Materials and Methods
4.1. Data Sources
4.2. Cohort Selection and Follow-Up
4.3. Outcomes
4.4. Baseline Characteristics
4.5. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, S.; Maringe, C.; Coleman, M.; Peake, M.D.; Butler, J.; Young, N.; Bergström, S.; Hanna, L.; Jakobsen, E.; Kölbeck, K.; et al. ICBP Module 1 Working Group. Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: A population-based study, 2004–2007. Thorax 2013, 68, 551–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee Advisory Boards and Participating Institutions. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [PubMed] [Green Version]
- Dawe, D.E.; Harlos, C.H.; Juergens, R.A. Immuno-oncology-the new paradigm of lung cancer treatment. Curr. Oncol. 2020, 27 (Suppl. 2), S78–S86. [Google Scholar] [CrossRef] [PubMed]
- AIOM. Italian Guidelines on Lung Cancer. 2021. Available online: https://www.aiom.it/linee-guida-aiom-2021-neoplasie-del-polmone/ (accessed on 4 March 2022).
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Perez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1–positive, advanced non-small-cell lung cancer (keynote-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.; Felip, E.; Paz-Ares, L.; et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: Two-year outcomes from two randomized, open-label, phase iii trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 2017, 35, 3924–3933. [Google Scholar] [CrossRef]
- Créquit, P.; Chaimani, A.; Yavchitz, A.; Attiche, N.; Cadranel, J.; Trinquart, L.; Ravaud, P. Comparative efficacy and safety of second-line treatments for advanced non-small cell lung cancer with wild-type or unknown status for epidermal growth factor receptor: A systematic review and network meta-analysis. BMC Med. 2017, 15, 193. [Google Scholar] [CrossRef] [Green Version]
- Ramagopalan, S.; Gupta, A.; Arora, P.; Thorlund, K.; Ray, J.; Subbiah, V. Comparative Effectiveness of Atezolizumab, Nivolumab, and Docetaxel in Patients With Previously Treated Non-Small Cell Lung Cancer. JAMA Netw. Open 2021, 4, e2134299. [Google Scholar] [CrossRef]
- Weis, T.M.; Hough, S.; Reddy, H.G.; Daignault-Newton, S.; Kalemkerian, G.P. Real-world comparison of immune checkpoint inhibitors in non-small cell lung cancer following platinum-based chemotherapy. J. Oncol. Pharm. Pract. 2020, 26, 564–571. [Google Scholar] [CrossRef]
- Mencoboni, M.; Ceppi, M.; Bruzzone, M.; Taveggia, P.; Cavo, A.; Scordamaglia, F.; Gualco, M.; Filiberti, R.A. Effectiveness and Safety of Immune Checkpoint Inhibitors for Patients with Advanced Non Small-Cell Lung Cancer in Real-World: Review and Meta-Analysis. Cancers 2021, 13, 1388. [Google Scholar] [CrossRef]
- Verleger, K.; Penrod, J.R.; Manley Daumont, M.; Solem, C.; Luo, L.; Macahilig, C.; Hertel, N. Costs and Cost Drivers Associated with Non-Small-Cell Lung Cancer Patients Who Received Two or More Lines of Therapy in Europe. Clin. Outcomes Res. CEOR 2020, 12, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Marine, S.; Stéphane, R.; Nicolas, P.; Felizzi, F.; Paracha, N.; Benjamin, M.; Perol, M. Cost-effectiveness of atezolizumab versus docetaxel and nivolumab in the treatment of non-small cell lung cancer as a second line in France. J. Med. Econ. 2020, 23, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Ondhia, U.; Conter, H.J.; Owen, S.; Zhou, A.; Nam, J.; Singh, S.; Abdulla, A.; Chu, P.; Felizzi, F.; Paracha, N.; et al. Cost-effectiveness of second-line atezolizumab in Canada for advanced non-small cell lung cancer (NSCLC). J. Med. Econ. 2019, 22, 625–637. [Google Scholar] [CrossRef]
- Franchi, M.; Cortinovis, D.; Corrao, G. Treatment Patterns, Clinical Outcomes and Healthcare Costs of Advanced Non-Small Cell Lung Cancer: A Real-World Evaluation in Italy. Cancers 2021, 13, 3809. [Google Scholar] [CrossRef]
- Franchi, M.; Rea, F.; Santucci, C.; La Vecchia, C.; Boffetta, P.; Corrao, G. Developing a multimorbidity prognostic score in elderly patients with solid cancer using administrative databases from Italy. Aging Cancer 2021, 2, 98–104. [Google Scholar] [CrossRef]
- Zhao, L.; Claggett, B.; Tian, L.; Uno, H.; Pfeffer, M.A.; Solomon, S.D.; Trippa, L.; Wei, L.J. On the restricted mean survival time curve in survival analysis. Biometrics 2016, 72, 215–221. [Google Scholar] [CrossRef]
- Pak, K.; Uno, H.; Kim, D.H.; Tian, L.; Kane, R.C.; Takeuchi, M.; Fu, H.; Claggett, B.; Wei, L.J. Interpretability of Cancer Clinical Trial Results Using Restricted Mean Survival Time as an Alternative to the Hazard Ratio. JAMA Oncol. 2017, 3, 1692–1696. [Google Scholar] [CrossRef]
- Bang, H.; Tsiatis, A.A. Median regression with censored cost data. Biometrics 2002, 58, 643–649. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H. A study on confidence intervals for incremental cost-effectiveness ratios. Biom. J. 2008, 50, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Canivet, C.; Costa, N.; Ory-Magne, F.; Arcari, C.; Mohara, C.; Pourcel, L.; Derumeaux, H.; Bérard, E.; Bourrel, R.; Molinier, L.; et al. Clinical Impact and Cost-Effectiveness of an Education Program for PD Patients: A Randomized Controlled Trial. PLoS ONE 2016, 11, e0162646. [Google Scholar] [CrossRef] [PubMed]
Second-Line Treatment | ||||
---|---|---|---|---|
Nivolumab N = 1193 | Pembrolizumab N = 138 | Atezolizumab N = 276 | p-Value | |
Sex | ||||
Male | 844 (70.7) | 94 (68.2) | 183 (66.3) | 0.318 |
Female | 349 (29.3) | 44 (31.8) | 93 (33.7) | |
Age | ||||
<60 | 192 (16.1) | 29 (21.0) | 50 (18.1) | 0.509 |
60–69 | 406 (34.0) | 43 (31.2) | 84 (30.4) | |
70–79 | 494 (41.4) | 54 (39.1) | 111 (40.2) | |
≥80 | 101 (8.5) | 12 (8.7) | 31 (11.2) | |
Cancer morbidity score | ||||
<10 | 273 (22.9) | 34 (24.6) | 72 (26.1) | 0.687 |
10–19 | 531 (44.5) | 65 (47.1) | 119 (42.1) | |
20–29 | 304 (25.5) | 31 (22.5) | 61 (22.1) | |
≥30 | 85 (7.1) | 8 (5.8) | 24 (8.7) | |
Year of second-line treatment | ||||
2015 | 2 (0.2) | 0 (0) | 0 (0) | <0.001 |
2016 | 140 (11.7) | 0 (0) | 0 (0) | |
2017 | 428 (35.9) | 29 (21.0) | 0 (0) | |
2018 | 325 (27.2) | 43 (31.2) | 27 (9.8) | |
2019 | 203 (17.0) | 36 (26.1) | 176 (63.8) | |
2020 | 95 (8.0) | 30 (21.7) | 73 (26.5) |
Hazard Ratio (95% Confidence Intervals) | |
---|---|
Second-line treatment | |
Nivolumab | Reference |
Pembrolizumab | 1.01 (0.81–1.25) |
Atezolizumab | 1.03 (0.88–1.21) |
Sex | |
Male | Reference |
Female | 1.04 (0.92–1.18) |
Age class | |
<60 years | Reference |
60–69 years | 1.08 (0.91–1.28) |
70–79 years | 1.05 (0.89–1.25) |
≥80 years | 1.12 (0.88–1.42) |
Cancer Multimorbidity Score | |
<10 | Reference |
10–19 | 1.36 (1.17–1.59) |
20–29 | 1.72 (1.45–2.03) |
≥30 | 1.88 (1.48–2.39) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franchi, M.; Pellegrini, G.; Corrao, G. Effectiveness and Cost-Effectiveness Profile of Second-Line Treatments with Nivolumab, Pembrolizumab and Atezolizumab in Patients with Advanced Non-Small Cell Lung Cancer. Pharmaceuticals 2022, 15, 489. https://doi.org/10.3390/ph15040489
Franchi M, Pellegrini G, Corrao G. Effectiveness and Cost-Effectiveness Profile of Second-Line Treatments with Nivolumab, Pembrolizumab and Atezolizumab in Patients with Advanced Non-Small Cell Lung Cancer. Pharmaceuticals. 2022; 15(4):489. https://doi.org/10.3390/ph15040489
Chicago/Turabian StyleFranchi, Matteo, Giacomo Pellegrini, and Giovanni Corrao. 2022. "Effectiveness and Cost-Effectiveness Profile of Second-Line Treatments with Nivolumab, Pembrolizumab and Atezolizumab in Patients with Advanced Non-Small Cell Lung Cancer" Pharmaceuticals 15, no. 4: 489. https://doi.org/10.3390/ph15040489
APA StyleFranchi, M., Pellegrini, G., & Corrao, G. (2022). Effectiveness and Cost-Effectiveness Profile of Second-Line Treatments with Nivolumab, Pembrolizumab and Atezolizumab in Patients with Advanced Non-Small Cell Lung Cancer. Pharmaceuticals, 15(4), 489. https://doi.org/10.3390/ph15040489