Low Drug Loading Hampers the Clinical Translation of Peptide Drugs-Containing Metered-Dose Inhalers
Abstract
:1. Pressing Need for Developing New Delivery Approach for Peptide Drugs
2. Metered-Dose Inhalers Are Promising Alternatives for Peptide Drugs Delivery
3. Bottleneck Issue of Clinical Translation for Peptide Drugs-Containing Metered-Dose Inhalers
3.1. Low Drug Loading: The Bottleneck Issue
3.2. The Cause for the Bottleneck Issue
3.3. Established Technology Cannot Well Overcome the Bottleneck Issue
4. Possible Strategies for Enhancing the Drug Loading
4.1. Strategy 1: ‘Physical Thinning’
- (1)
- Methodology: Employing amphiphilic materials with high surface-active properties in the formulation of peptide drugs-containing MDIs;
- (2)
- Principle: the high surface-active property enables the carrier particles to self-assemble at a low concentration [38] and generates merely a thin layer of amphiphilic materials; the strong interaction with the peptide drugs protects the latter from escaping the thin layer to cause conformational instability and therefore enables more peptide drugs to be encapsulated in the carrier particles;
- (3)
- (4)
- Advantages: With high surface-active properties, the content of amphiphilic materials can be controlled to a remarkably low level. Thus, not only the proportion of peptide drugs is elevated, but also the potential toxicity of amphiphilic materials will be minimized [41].
- (5)
- Limitations: much attention should be paid to the selection of amphiphilic materials, as those with high surface-active properties may not have been officially approved for pharmaceutical uses.
4.2. Strategy 2: ‘Chemical Thinning’
- (1)
- Methodology: utilizing chemical reactions to bind peptide drugs with amphiphilic materials, and the products can self-assemble into carrier particles;
- (2)
- Principle: There are many chemically active groups in peptide drugs that can be covalently bonded to the amphiphilic materials, and the conjugate may still possess the self-assemble attributes. Compared with physical encapsulation, chemical linking guarantees the stoichiometry between amphiphilic materials and peptide drugs [42], which will remarkably enhance the drug loading. Notably, if the molecule of a certain peptide drug is large enough, it can be linked to a hydrophobic chain instead of an amphiphilic material since the peptide drug per se can serve as the hydrophilic domain;
- (3)
- (4)
- Advantages: The physical stability of carrier particles can be substantially improved since the linked amphiphilic materials serve as a more solid ‘buffer zone’ compared with the conventional ones. They will not easily dissociate during storage to block the propellants;
- (5)
- Limitations: chemical reactions may introduce unpredictable byproducts into the MDI system, adding burden to the quality-control process and even provoking potential toxicities.
4.3. Strategy 3: ‘Leaving out’
- (1)
- Methodology: screening a cosolvent where peptide drugs aggregate, and meanwhile, the physical stability is satisfactory;
- (2)
- Principle: Theoretically, directly dispersing peptide drugs in the propellant without carrier particles will give a peptide drug proportion of 100%. Provided the peptide drugs can be stably dispersed in the propellant with the help of proper cosolvents, the drug loading may be significantly improved. If a certain peptide drug can form self-assembled objects, this strategy may be more applicable;
- (3)
- (4)
- Advantages: The theoretical drug loading can reach 100% without the addition of amphiphilic materials. In other words, the drug loading of peptide drugs-containing MDIs can be maximized by this strategy. It is especially orchestrated for those peptide drugs of large dosage;
- (5)
- Limitations: There may be difficulties in properly finding a facile cosolvent for peptide drugs. In addition, the cosolvent generally contains organic solvents that can exert safety concerns.
5. Implications and Future Perspectives
6. Summary and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, Z.; Liu, Y.; Ji, X.; Zheng, Y.; Li, Z.; Jiang, S.; Li, H.; Kong, Y. DAKS1, a Kunitz Scaffold Peptide from the Venom Gland of Deinagkistrodon acutus Prevents Carotid-Artery and Middle-Cerebral-Artery Thrombosis via Targeting Factor XIa. Pharmaceuticals 2021, 14, 966. [Google Scholar] [CrossRef] [PubMed]
- Mitra, M.S.; DeMarco, S.; Holub, B.; Thiruneelakantapillai, L.; Thackaberry, E.A. Development of peptide therapeutics: A nonclinical safety assessment perspective. Regul. Toxicol. Pharmacol. 2020, 117, 104766. [Google Scholar] [CrossRef]
- Isidro-Llobet, A.; Kenworthy, M.N.; Mukherjee, S.; Kopach, M.E.; Wegner, K.; Gallou, F.; Smith, A.G.; Roschangar, F. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J. Org. Chem. 2019, 84, 4615–4628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albericio, F.; Kruger, H.G. Therapeutic peptides. Future Med. Chem. 2012, 4, 1527–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.-J.; Lv, Z.-Q.; Guo, S.; Jiang, G.-P.; Liu, H.-L. An update—Prolonging the action of protein and peptide drugs. J. Drug Deliv. Sci. Technol. 2020, 61, 102124. [Google Scholar] [CrossRef]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef]
- Brayden, D.J. Evolving peptides for oral intake. Nat. Biomed. Eng. 2020, 4, 487–488. [Google Scholar] [CrossRef]
- Zelikin, A.N.; Ehrhardt, C.; Healy, A.M. Materials and methods for delivery of biological drugs. Nat. Chem. 2016, 8, 997–1007. [Google Scholar] [CrossRef]
- Coronel-Martinez, D.L.; Park, J.; Lopez-Medina, E.; Capeding, M.R.; Bonfanti, A.A.C.; Montalban, M.C.; Ramirez, I.; Gonzales, M.L.A.; DiazGranados, C.A.; Zambrano, B.; et al. Immunogenicity and safety of simplified vaccination schedules for the CYD-TDV dengue vaccine in healthy individuals aged 9–50 years (CYD65): A randomised, controlled, phase 2, non-inferiority study. Lancet Infect. Dis. 2021, 21, 517–528. [Google Scholar] [CrossRef]
- Feger, G.; Angelov, B.; Angelova, A. Prediction of Amphiphilic Cell-Penetrating Peptide Building Blocks from Protein-Derived Amino Acid Sequences for Engineering of Drug Delivery Nanoassemblies. J. Phys. Chem. B 2020, 124, 4069–4078. [Google Scholar] [CrossRef]
- Angelova, A.; Drechsler, M.; Garamus, V.M.; Angelov, B. Pep-Lipid Cubosomes and Vesicles Compartmentalized by Micelles from Self-Assembly of Multiple Neuroprotective Building Blocks Including a Large Peptide Hormone PACAP-DHA. ChemNanoMat 2019, 5, 1381–1389. [Google Scholar] [CrossRef]
- Liu, D.; Angelova, A.; Liu, J.; Garamus, V.M.; Angelov, B.; Zhang, X.; Li, Y.; Feger, G.; Li, N.; Zou, A. Self-assembly of mitochondria-specific peptide amphiphiles amplifying lung cancer cell death through targeting the VDAC1–hexokinase-II complex. J. Mater. Chem. B 2019, 7, 4706–4716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Angelova, A.; Garamus, V.M.; Angelov, B.; Tu, S.; Kong, L.; Zhang, X.; Li, N.; Zou, A. Mitochondrial Voltage-Dependent Anion Channel 1–Hexokinase-II Complex-Targeted Strategy for Melanoma Inhibition Using Designed Multiblock Peptide Amphiphiles. ACS Appl. Mater. Interfaces 2021, 13, 35281–35293. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 2020, 19, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.; Pechenov, S.; Subramony, J.A. Oral peptide delivery: Translational challenges due to physiological effects. J. Control. Release 2018, 287, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, M.; Hutton, A.R.; Donnelly, R.F. Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations. Pharm. Res. 2020, 37, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Enlo-Scott, Z.; Swedrowska, M.; Forbes, B. Epithelial permeability and drug absorption in the lungs. In Inhaled Medicines; Elsevier: Amsterdam, The Netherlands, 2021; pp. 267–299. [Google Scholar] [CrossRef]
- Wallin, M.; Tagami, T.; Chen, L.; Yang, M.; Chan, H.-K. Pulmonary drug delivery to older people. Adv. Drug Deliv. Rev. 2018, 135, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Fromer, L.; Goodwin, E.; Walsh, J. Customizing Inhaled Therapy to Meet the Needs of COPD Patients. Postgrad. Med. 2010, 122, 83–93. [Google Scholar] [CrossRef]
- Jiao, X.; Sheng, D.; Zhan, X.; Zhan, Y. The potential benefit of continuous metered-dose inhaler inhalation technique verbal counselling on asthmatic. Int. J. Clin. Pract. 2020, 75. [Google Scholar] [CrossRef]
- Vallorz, E.; Sheth, P.; Myrdal, P. Pressurized Metered Dose Inhaler Technology: Manufacturing. AAPS PharmSciTech 2019, 20, 177. [Google Scholar] [CrossRef]
- Johal, B.; Murphy, S.; Tuohy, J.; Marshall, J. Plume Characteristics of Two HFA-Driven Inhaled Corticosteroid/Long-Acting Beta2-Agonist Combination Pressurized Metered-Dose Inhalers. Adv. Ther. 2015, 32, 567–579. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K.J.; Martin, G.P. Transition to CFC-free metered dose inhalers—into the new millennium. Int. J. Pharm. 2000, 201, 89–107. [Google Scholar] [CrossRef]
- Butz, N.; Porté, C.; Courrier, H.; Krafft, M.P.; Vandamme, T. Reverse water-in-fluorocarbon emulsions for use in pressurized metered-dose inhalers containing hydrofluoroalkane propellants. Int. J. Pharm. 2002, 238, 257–269. [Google Scholar] [CrossRef]
- Scholten, K.; Merten, C. Solvation of the Boc-Val-Phe-nPr peptide characterized by VCD spectroscopy and DFT calculations. Phys. Chem. Chem. Phys. 2022, 24, 3611–3617. [Google Scholar] [CrossRef] [PubMed]
- Douafer, H.; Andrieu, V.; Brunel, J.M. Scope and limitations on aerosol drug delivery for the treatment of infectious respiratory diseases. J. Control. Release 2020, 325, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Cocks, E.; Somavarapu, S.; Alpar, O.; Greenleaf, D. Influence of Suspension Stabilisers on the Delivery of Protein-Loaded Porous Poly (DL-Lactide-co-Glycolide) (PLGA) Microparticles via Pressurised Metered dose Inhaler (pMDI). Pharm. Res. 2014, 31, 2000–2009. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Huang, Z.; Ma, X.; Dong, N.; Chen, W.; Pan, X.; Wu, C. Enhancing Stability of Exenatide-Containing Pressurized Metered-Dose Inhaler via Reverse Microemulsion System. AAPS PharmSciTech 2018, 19, 2499–2508. [Google Scholar] [CrossRef]
- Shan, Z.; Tan, Y.; Qin, L.; Li, G.; Pan, X.; Wang, Z.; Yu, X.; Wang, Q.; Wu, C. Formulation and evaluation of novel reverse microemulsions containing salmon calcitonin in hydrofluoroalkane propellants. Int. J. Pharm. 2014, 466, 390–399. [Google Scholar] [CrossRef]
- Peng, T.; Zhang, X.; Huang, Y.; Zhao, Z.; Liao, Q.; Xu, J.; Huang, Z.; Zhang, J.; Wu, C.-Y.; Pan, X.; et al. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation. Sci. Rep. 2017, 7, srep46517. [Google Scholar] [CrossRef] [Green Version]
- Nyambura, B.K.; Kellaway, I.W.; Taylor, K.M. Insulin nanoparticles: Stability and aerosolization from pressurized metered dose inhalers. Int. J. Pharm. 2009, 375, 114–122. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, H.; Yang, B.; Chen, L.; Huang, Y.; Quan, G.; Zhu, C.; Li, X.; Pan, X.; Wu, C. Anhydrous reverse micelle nanoparticles: New strategy to overcome sedimentation instability of peptide-containing pressurized metered-dose inhalers. Drug Deliv. 2017, 24, 527–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.-Y.; Xu, E.-Y. Innovative pMDI formulations of spray-dried nanoparticles for efficient pulmonary drug delivery. Int. J. Pharm. 2017, 530, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.H.; Liu, Y.; Tang, Y.; Chen, J.; Li, S.H.; Pu, J.; Han, L.D. GABA(B) receptor ligand-directed trimethyl chitosan/tripolyphosphate nanoparticles and their pMDI formulation for survivin siRNA pulmonary delivery. Carbohyd. Polym. 2018, 179, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, H.; Ansarfard, F.; Ghodsbin, F.; Ghayumi, M.A.; Sayadi, M. The Effect of Training Inhalation Technique with or without Spacer on Maximum Expiratory Flow Rate and Inhaler Usage Skills in Asthmatic Patients: A Randomized Controlled Trial. Int. J. Community Based Nurs. Midwifery 2014, 2, 211–219. [Google Scholar]
- Talaat, M.; Si, X.; Xi, J. Effect of MDI Actuation Timing on Inhalation Dosimetry in a Human Respiratory Tract Model. Pharmaceuticals 2022, 15, 61. [Google Scholar] [CrossRef]
- Boeve, J.; Joye, I.J. Food-grade strategies to increase stability of whey protein particles: Particle hardening through aldehyde treatment. Food Hydrocoll. 2019, 100, 105353. [Google Scholar] [CrossRef]
- Lee, K.H.; Ireland, M.; Miller, B.L.; Wyslouzil, B.E.; Winter, J.O. Synthesis of polymer nanoparticles via electrohydrodynamic emulsification-mediated self-assembly. J. Colloid Interface Sci. 2020, 586, 445–456. [Google Scholar] [CrossRef]
- Mendez, M.A.; Prudent, M.; Su, B.; Girault, H.H. Peptide-Phospholipid Complex Formation at Liquid-Liquid Interfaces. Anal. Chem. 2008, 80, 9499–9507. [Google Scholar] [CrossRef] [Green Version]
- Anada, C.; Ikeda, K.; Egawa, A.; Fujiwara, T.; Nakao, H.; Nakano, M. Temperature- and composition-dependent conformational transitions of amphipathic peptide–phospholipid nanodiscs. J. Colloid Interface Sci. 2020, 588, 522–530. [Google Scholar] [CrossRef]
- Kaur, G.; Mehta, S. Developments of Polysorbate (Tween) based microemulsions: Preclinical drug delivery, toxicity and antimicrobial applications. Int. J. Pharm. 2017, 529, 134–160. [Google Scholar] [CrossRef]
- Nestor, J.J.; Wang, W. Surfactant-modified parathyroid hormone fragments with high potency and prolonged action: Structure-informed design using glycolipid surfactant conjugation. Pept. Sci. 2021, 113, e24225. [Google Scholar] [CrossRef]
- Bansal, K.K.; Özliseli, E.; Rosling, A.; Rosenholm, J.M. Synthesis and Evaluation of Novel Functional Polymers Derived from Renewable Jasmine Lactone for Stimuli-Responsive Drug Delivery. Adv. Funct. Mater. 2021, 31, 2101998. [Google Scholar] [CrossRef]
- Sun, H.; Hong, Y.X.; Xi, Y.J.; Zou, Y.J.; Gao, J.Y.; Du, J.Z. Synthesis, Self-Assembly, and Biomedical Applications of Antimicrobial Peptide-Polymer Conjugates. Biomacromolecules 2018, 19, 1701–1720. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Yang, Z.; Peng, X.; Xin, F.; Xu, Y.; Feng, M.; Zhao, C.; Hu, H.; Wu, C. A novel bottom-up process to produce nanoparticles containing protein and peptide for suspension in hydrofluoroalkane propellants. Int. J. Pharm. 2011, 413, 167–173. [Google Scholar] [CrossRef]
- Tzou, T.-Z.; Pachuta, R.R.; Coy, R.B.; Schultz, R.K. Drug Form Selection in Albuterol-Containing Metered-Dose Inhaler Formulations and Its Impact on Chemical and Physical Stability. J. Pharm. Sci. 1997, 86, 1352–1357. [Google Scholar] [CrossRef]
- Mao, B.-H.; El-Mahdy, A.F.M.; Kuo, S.-W. Bio-inspired multiple complementary hydrogen bonds enhance the miscibility of conjugated polymers blended with polystyrene derivatives. J. Polym. Res. 2019, 26, 1–10. [Google Scholar] [CrossRef]
- Bray, B.L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov. 2003, 2, 587–593. [Google Scholar] [CrossRef]
- Stepensky, D. Pharmacokinetics of Toxin-Derived Peptide Drugs. Toxins 2018, 10, 483. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, T.M.; Shi, H.; Pietryka, J.; Hoag, S.W.; Medek, A. Investigation of Polymer/Surfactant Interactions and Their Impact on Itraconazole Solubility and Precipitation Kinetics for Developing Spray-Dried Amorphous Solid Dispersions. Mol. Pharm. 2018, 15, 962–974. [Google Scholar] [CrossRef]
- Wei, G.; Jin, L.A.; Xu, L.J.; Liu, Y.; Lu, W.Y. Preparation, characterization and in vivo pharmacodynamic evaluation of thymopentin loaded poly(lactide acid)/poly(lactide-co-glycolide acid) implants. Int. J. Pharmaceut. 2010, 398, 123–129. [Google Scholar] [CrossRef]
- Haak, T.; Tiengo, A.; Draeger, E.; Suntum, M.; Waldhausl, W. Lower within-subject variability of fasting blood glucose and reduced weight gain with insulin detemir compared to NPH insulin in patients with type 2 diabetes. Diabetes Obes. Metab. 2004, 7, 56–64. [Google Scholar] [CrossRef]
- Frampton, J.E. Mifamurtide: A review of its use in the treatment of osteosarcoma. Paediatr. Drugs 2010, 12, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Badaru, A.; Wilson, D.M.; Bachrach, L.K.; Fechner, P.; Gandrud, L.M.; Durham, E.; Wintergerst, K.; Chi, C.; Klein, K.O.; Neely, E.K. Sequential Comparisons of One-Month and Three-Month Depot Leuprolide Regimens in Central Precocious Puberty. J. Clin. Endocrinol. Metab. 2006, 91, 1862–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, P.S.; Faulds, D.; Balfour, J.A.; Perry, C.M. Ganirelix. Drugs 2000, 59, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Tuvia, S.; Atsmon, J.; Teichman, S.L.; Katz, S.; Salama, P.; Pelled, D.; Landau, I.; Karmeli, I.; Bidlingmaier, M.; Strasburger, C.J.; et al. Oral Octreotide Absorption in Human Subjects: Comparable Pharmacokinetics to Parenteral Octreotide and Effective Growth Hormone Suppression. J. Clin. Endocrinol. Metab. 2012, 97, 2362–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesnut, C.H.; Silverman, S.; Andriano, K.; Genant, H.; Gimona, A.; Harris, S.; Kiel, D.; LeBoff, M.; Maricic, M.; Miller, P.; et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: The prevent recurrence of osteoporotic fractures study. Am. J. Med. 2000, 109, 267–276. [Google Scholar] [CrossRef]
- Butwick, A.; Dyer, R. ST depression at caesarean section and the relation to oxytocin dose. A randomised controlled trial. BJOG: Int. J. Obstet. Gynaecol. 2010, 117, 1165. [Google Scholar] [CrossRef]
- Zinman, B.; Hoogwerf, B.J.; Garcia, S.D.; Milton, D.R.; Giaconia, J.M.; Kim, D.D.; Trautmann, M.E.; Brodows, R.G. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes—A randomized trial. Ann. Intern. Med. 2007, 146, 477–485. [Google Scholar] [CrossRef]
Propellant | Molecular Formula | Molecular Weight | Boiling Point (°C) | Density (g/mL) | Solubility in Water (20 °C) |
---|---|---|---|---|---|
HFA 134a | C2H2F4 | 102.03 | −26.5 | 1.210 | 1 in 1294 parts of water |
HFA 227 | C3HF7 | 170.03 | −16.4 | 1.409 | 1 in 1725 parts of water |
Peptide Drugs | Amphiphilic Carrier | Propellant | The Drug Loading (mg/mL) | The Delivered Dose Per Spray (μg) a | The Proportion of Amphiphilic Carrier (%) b | Reference |
---|---|---|---|---|---|---|
Bovine serum albumin | PLGA | HFA 227 | 0.047 | 1.6~4.7 | 97.65 | [27] |
Exenatide | Poloxamer/ethanol | HFA 134a | 0.103 | 3.6~10.3 | 93.50 | [28] |
Salmon calcitonin | Poloxamer/ethanol | HFA 134a | 0.115 | 4.0~11.5 | 95.71 | [29] |
Insulin | Lecithin/lactose | HFA 134a | 0.396 | 13.9~39.6 | 96.00 | [33] |
Insulin | Lecithin/lactose/glyceryl monooleate | HFA 134a | 0.361 | 12.6~36.1 | 97.42 | [31] |
Salmon calcitonin | Lecithin | HFA 134a | 0.171 | 6.0~17.1 | 91.14 | [34] |
Peptide Drugs | Indication | The Dose (Per Day or Per Use) (μg) a | Reference |
---|---|---|---|
Thymopentin | Immunodeficiency disease | 500 | [51] |
Insulin | Type I/type II diabetes | 385 | [52] |
Mifamurtide | Osteosarcoma | 285 | [53] |
Leuprorelin | Central precocious puberty | 250 | [54] |
Ganirelix | Prevent premature ovulation | 250 | [55] |
Octreotide | Stress ulcer and gastrointestinal bleeding | 100 | [56] |
Salmon calcitonin | Osteoporosis | 40 | [57] |
Oxytocin | Uterine bleeding caused by weak or poor contractions | 25 | [58] |
Exenatide | Type II diabetes | 10 | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Shu, L.; Huang, Y.; Wu, C.; Pan, X. Low Drug Loading Hampers the Clinical Translation of Peptide Drugs-Containing Metered-Dose Inhalers. Pharmaceuticals 2022, 15, 389. https://doi.org/10.3390/ph15040389
Huang Z, Shu L, Huang Y, Wu C, Pan X. Low Drug Loading Hampers the Clinical Translation of Peptide Drugs-Containing Metered-Dose Inhalers. Pharmaceuticals. 2022; 15(4):389. https://doi.org/10.3390/ph15040389
Chicago/Turabian StyleHuang, Zhengwei, Lei Shu, Ying Huang, Chuanbin Wu, and Xin Pan. 2022. "Low Drug Loading Hampers the Clinical Translation of Peptide Drugs-Containing Metered-Dose Inhalers" Pharmaceuticals 15, no. 4: 389. https://doi.org/10.3390/ph15040389
APA StyleHuang, Z., Shu, L., Huang, Y., Wu, C., & Pan, X. (2022). Low Drug Loading Hampers the Clinical Translation of Peptide Drugs-Containing Metered-Dose Inhalers. Pharmaceuticals, 15(4), 389. https://doi.org/10.3390/ph15040389