Association of Amlodipine with the Risk of In-Hospital Death in Patients with COVID-19 and Hypertension: A Reanalysis on 184 COVID-19 Patients with Hypertension
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Crespi, B.; Alcock, J. Conflicts over calcium and the treatment of COVID-19. Evol. Med. Public Health 2021, 9, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Sadeghpopur, S.; Ghasemnejad-Berenji, H.; Pashapour, S.; Ghasemnejad-Berenji, M. Using of calcium channel blockers in patients with COVID-19: A magic bullet or a double-edged sword? J. Basic Clin. Physiol. Pharmacol. 2021, 33, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Solaimanzadeh, I. Why Pulmonary Vasodilation May Be Part of a Key Strategy to Improve Survival in COVID-19. Cureus 2021, 13, e20746. [Google Scholar] [CrossRef]
- Berlansky, S.; Sallinger, M.; Grabmayr, H.; Humer, C.; Bernhard, A.; Fahrner, M.; Frischauf, I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022, 11, 253. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Y.; Zeng, H.L.; Peng, Y.; Jiang, X.; Shang, W.J. Calcium channel blocker amlodipine besylate is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discov. 2020, 6, 96. [Google Scholar] [CrossRef]
- Ghahremanpour, M.M.; Tirado-Rives, J.; Deshmukh, M.; Ippolito, J.A.; Zhang, C.H.; Cabeza de Vaca, I.; Liosi, M.E.; Anderson, K.S.; Jorgensen, W.L. Identification of 14 Known Drugs as Inhibitors of the Main Protease of SARS-CoV-2. ACS Med. Chem. Lett. 2020, 11, 2526–2533. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, C.; Chang, D.; Wang, Y.; Dong, X.; Jiao, T.; Zhao, Z.; Ren, L.; Cruz, C.S.D.; Sharma, L.; et al. Identification of Potent and Safe Antiviral Therapeutic Candidates Against SARS-CoV-2. Front. Immunol. 2020, 11, 586572. [Google Scholar] [CrossRef]
- Pickard, A.; Calverley, B.C.; Chang, J.; Garva, R.; Gago, S.; Lu, Y.; Kadler, K.E. Discovery of re-purposed drugs that slow SARS-CoV-2 replication in human cells. PLoS Pathog. 2021, 17, e1009840. [Google Scholar] [CrossRef]
- Straus, M.R.; Bidon, M.K.; Tang, T.; Jaimes, J.A.; Whittaker, G.R.; Daniel, S. Inhibitors of L-Type Calcium Channels Show Therapeutic Potential for Treating SARS-CoV-2 Infections by Preventing Virus Entry and Spread. ACS Infect. Dis. 2021, 7, 2807–2815. [Google Scholar] [CrossRef]
- Hoagland, D.A.; Clarke, D.J.B.; Møller, R.; Han, Y.; Yang, L.; Wojciechowicz, M.L.; Lachmann, A.; Oguntuyo, K.Y.; Stevens, C.; Lee, B.; et al. Modulating the transcriptional landscape of SARS-CoV-2 as an effective method for developing antiviral compounds. Biorxiv 2020. [Google Scholar] [CrossRef]
- Alsagaff, M.Y.; Mulia, E.P.B.; Maghfirah, I.; Luke, K.; Nugraha, D.; Rachmi, D.A.; Septianda, I.; A’Yun, M.Q. Association of calcium channel blocker use with clinical outcome of COVID-19: A meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102210. [Google Scholar] [CrossRef] [PubMed]
- Kow, C.S.; Ramachandram, D.S.; Hasan, S.S. Clinical outcomes of hypertensive patients with COVID-19 receiving calcium channel blockers: A systematic review and meta-analysis. Hypertens. Res. 2021, 45, 360–363. [Google Scholar] [CrossRef]
- Kornhuber, J.; Tripal, P.; Reichel, M.; Mühle, C.; Rhein, C.; Muehlbacher, M.; Groemer, T.W.; Gulbins, E. Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): A Novel Pharmacological Group of Drugs with Broad Clinical Applications. Cell. Physiol. Biochem. 2010, 26, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Loas, G.; Le Corre, P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals 2021, 14, 691. [Google Scholar] [CrossRef] [PubMed]
- Schloer, S.; Brunotte, L.; Goretzko, J.; Mecate-Zambrano, A.; Korthals, N.; Gerke, V.; Ludwig, S.; Rescher, U. Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerg. Microbes Infect. 2020, 9, 2245–2255. [Google Scholar] [CrossRef]
- Dechaumes, A.; Nekoua, M.P.; Belouzard, S.; Sane, F.; Engelmann, I.; Dubuisson, J.; Alidjinou, E.K.; Hober, D. Fluoxetine Can Inhibit SARS-CoV-2 In Vitro. Microorganisms 2021, 9, 339. [Google Scholar] [CrossRef]
- Brunotte, L.; Zheng, S.; Mecate-Zambrano, A.; Tang, J.; Ludwig, S.; Rescher, U.; Schloer, S. Combination Therapy with Fluoxetine and the Nucleoside Analog GS-441524 Exerts Synergistic Antiviral Effects against Different SARS-CoV-2 Variants In Vitro. Pharmaceuticals 2021, 13, 1400. [Google Scholar] [CrossRef]
- Schloer, S.; Brunotte, L.; Mecate-Zambrano, A.; Zheng, S.; Tang, J.; Ludwig, S.; Rescher, U. Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine and itraconazole effectively impairs SARS-CoV-2 infection in vitro. J. Cereb. Blood Flow Metab. 2021, 178, 2339–2350. [Google Scholar] [CrossRef]
- Le Corre, P.; Loas, G. Difficulty in repurposing SSRIs and other antidepressants with functional inhibition of acid sphingo-myelinase in COVID-19 infection. Front. Pharmacol. 2022, 13, 849095. [Google Scholar] [CrossRef]
- Solaimanzadeh, I. Nifedipine and Amlodipine Are Associated with Improved Mortality and Decreased Risk for Intubation and Mechanical Ventilation in Elderly Patients Hospitalized for COVID-19. Cureus 2020, 12, e8069. [Google Scholar] [CrossRef] [PubMed]
- Darquennes, G.; Le Corre, P.; Le Moine, O.; Loas, G. Association between Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) and Reduced Risk of Death in COVID-19 Patients: A Retrospective Cohort Study. Pharmaceuticals 2021, 14, 226. [Google Scholar] [CrossRef] [PubMed]
- Hoertel, N.; Sánchez-Rico, M.; Gulbins, E.; Kornhuber, J.; Carpinteiro, A.; Lenze, E.J.; Reiersen, A.M.; Abellán, M.; De La Muela, P.; Vernet, R.; et al. Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVID-19: An Observational Multicenter Study. Clin. Pharmacol. Ther. 2021, 110, 1498–1511. [Google Scholar] [CrossRef] [PubMed]
- Nouri-Vaskeh, M.; Kalami, N.; Zand, R.; Soroureddin, Z.; Varshochi, M.; Ansarin, K.; Rezaee, H.; Taghizadieh, A.; Sadeghi, A.; Maleki, M.A.; et al. Comparison of losartan and amlodipine effects on the outcomes of patient with COVID-19 and primary hypertension: A randomised clinical trial. Int. J. Clin. Pract. 2021, 75, e14124. [Google Scholar] [CrossRef]
- Loas, G.; Le Corre, P. Comment on ‘Comparison of losartan and amlodipine effects on the outcomes of patient with COVID-19 and primary hypertension: A randomised clinical trial’. Int. J. Clin. Pr. 2021, 75, e14957. [Google Scholar] [CrossRef]
- Kummer, S.; Lander, A.; Goretzko, J.; Kirchoff, N.; Rescher, U.; Schloer, S. Pharmacologically induced endolysosomal cho-lesterol imbalance through clinically licensed drugs itraconazole and fluoxetine impairs Ebola virus infection in vitro. Emerg. Microbes Infect. 2022, 11, 195–207. [Google Scholar] [CrossRef]
- Sakurai, Y.; Kolokoltsov, A.A.; Chen, C.-C.; Tidwell, M.W.; Bauta, W.E.; Klugbauer, N.; Grimm, C.; Wahl-Schott, C.; Biel, M.; Davey, R.A. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 2015, 347, 995–998. [Google Scholar] [CrossRef] [Green Version]
- Glesby, M.J.; Aberg, J.A.; Kendall, M.A.; Fichtenbaum, C.J.; Hafner, R.; Hall, S.; Grosskopf, N.; Zolopa, A.R.; Gerber, J.G. Adult AIDS Clinical Trials Group A5159 Protocol Team. Pharmacokinetic interactions between indinavir plus ritonavir and calcium channel blockers. Clin. Pharm. Ther. 2005, 78, 143–153. [Google Scholar] [CrossRef]
- Vincent, J.; Harris, S.I.; Foulds, G.; Dogolo, L.C.; Willavize, S.; Friedman, H.L. Lack of effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of amlodipine. Br. J. Clin. Pharmacol. 2000, 50, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Crespi, B. Evolutionary medical insights into the SARS-CoV-2 pandemic. Evol. Med. Public Health 2020, 2020, 314–322. [Google Scholar] [CrossRef]
- Mukherjee, D.; Zha, J.; Menon, R.M.; Shebley, M. Guiding dose adjustment of amlodipine after co-administration with ritonavir containing regimens using a physiologically-based pharmacokinetic/pharmacodynamic model. J. Pharmacokinet. Pharmacodyn. 2018, 45, 443–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courlet, P.; Guidi, M.; Saldanha, S.A.; Cavassini, M.; Stoeckle, M.; Buclin, T.; Marzolini, C.; Decosterd, L.A.; Csajka, C. Population pharmacokinetic modelling to quantify the magnitude of drug-drug interactions between amlodipine and antiretroviral drugs. Eur. J. Clin. Pharmacol. 2021, 77, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Statistica Software, Version 7.1; Statsoft: Tulsa, OK, USA, 2005.
- Pizzorno, A.; Padey, B.; Julien, T.; Trouillet-Assant, S.; Traversier, A.; Errazuriz-Cerda, E.; Rosa-Calatrava, M. Charac-terization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia. Cell Rep. Med. 2020, 1, 100059. [Google Scholar] [CrossRef] [PubMed]
Demographic/Clinical Characteristics. | n (%) |
---|---|
Age | 69.54 +/− 14.6 * |
Sex | |
Female | 81 (44) |
Male | 103 (56) |
Comorbidities | |
Diabetes | 76 (41.3) |
Chronic lung diseases | 38 (20.6) |
Chronic liver diseases | 23 (12.5) |
Chronic cardiac diseases | 81 (44) |
Chronic rheumatic disease | 33 (17.9) |
Chronic kidney disease | 60 (32.6) |
Malignant neoplasm | 28 (15.2) |
Chronic neurologic disorders | 47 (25.5) |
Dementia | 20 (10.9) |
Chronic hematologic disease | 29 (15.8) |
Asthma | 13 (7) |
Obesity | 54 (29.3) |
Smoking | 13 (7.1) |
Mortality | 52 (28.3) |
Amlodipine (chronic) | 55 (29.9) |
Other antihypertensive drugs | 26 (14.1) |
No antihypertensive drugs | 103 (56) |
n = 184, (55 Amlodipine, 129 n-Amlodipine) | n = 162, (55 Amlodipine, 107 n-Amlodipine) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Univariate Analysis | Multivariable Analysis | Univariate Analysis | Multivariable Analysis | ||||||||
OR | 95% CI | p-Value | aOR | 95% CI | p-Value | OR | 95% CI | p-Value | aOR | 95% CI | p-Value | |
Age | 1.04 | 1.01–1.07 | 0.0018 | 1.03 | 0.99–1.06 | 0.05 | 1.03 | 1–1.06 | 0.016 | 1.02 | 0.98–1.05 | 0.31 |
Female sex (vs. male) | NS | NS | ||||||||||
Comorbidities | ||||||||||||
Diabetes | NS | NS | ||||||||||
Chronic lung diseases | NS | NS | ||||||||||
Chronic liver diseases | NS | NS | ||||||||||
Chronic cardiac diseases | NS | NS | ||||||||||
Chronic rheumatic disease | NS | NS | ||||||||||
Chronic kidney disease | 2.57 | 1.31–5.02 | 0.006 | 2.16 | 1.04–4.5 | 0.039 | 2.71 | 1.31–5.62 | 0.007 | 2.47 | 1.09–5.58 | 0.028 |
Malignant neoplasm | 2.6 | 1.13–5.97 | 0.023 | 2.46 | 1.01–6.01 | 0.047 | 3.45 | 1.4–8.5 | 0.007 | 3.11 | 1.16–8.31 | 0.022 |
Chronic neurologic disorders | NS | NS | ||||||||||
Dementia | 2.9 | 1.12–7.51 | 0.027 | 1.57 | 0.55–4.51 | 0.4 | 3.66 | 1.23–10.89 | 0.019 | 2.25 | 0.64–7.87 | 0.2 |
Chronic hematologic disease | NS | NS | ||||||||||
Asthma | NS | NS | ||||||||||
Obesity | NS | NS | ||||||||||
Smoking | NS | NS | ||||||||||
AMLODIPINE | 0.27 | 0.11–0.65 | 0.003 | 0.29 | 0.11–0.74 | 0.009 | 0.29 | 0.12–0.70 | 0.006 | 0.3 | 0.11–0.78 | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loas, G.; Van de Borne, P.; Darquennes, G.; Le Corre, P. Association of Amlodipine with the Risk of In-Hospital Death in Patients with COVID-19 and Hypertension: A Reanalysis on 184 COVID-19 Patients with Hypertension. Pharmaceuticals 2022, 15, 380. https://doi.org/10.3390/ph15030380
Loas G, Van de Borne P, Darquennes G, Le Corre P. Association of Amlodipine with the Risk of In-Hospital Death in Patients with COVID-19 and Hypertension: A Reanalysis on 184 COVID-19 Patients with Hypertension. Pharmaceuticals. 2022; 15(3):380. https://doi.org/10.3390/ph15030380
Chicago/Turabian StyleLoas, Gwenolé, Philippe Van de Borne, Gil Darquennes, and Pascal Le Corre. 2022. "Association of Amlodipine with the Risk of In-Hospital Death in Patients with COVID-19 and Hypertension: A Reanalysis on 184 COVID-19 Patients with Hypertension" Pharmaceuticals 15, no. 3: 380. https://doi.org/10.3390/ph15030380
APA StyleLoas, G., Van de Borne, P., Darquennes, G., & Le Corre, P. (2022). Association of Amlodipine with the Risk of In-Hospital Death in Patients with COVID-19 and Hypertension: A Reanalysis on 184 COVID-19 Patients with Hypertension. Pharmaceuticals, 15(3), 380. https://doi.org/10.3390/ph15030380