Sodium Danshensu Cream Promotes the Healing of Pressure Ulcers in Mice through the Nrf2/HO-1 and NF-κB Pathways
Abstract
:1. Introduction
2. Results and Discussion
2.1. Establishment and Evaluation of PU in Mice
2.2. Determination of the Rate of Wound Healing
2.3. Histopathological Changes in Mice Skin
2.4. Determination of Serum Inflammatory Factors
2.5. Determination of Antioxidant Indices and MDA Levels
2.6. Effect of SDSS on the Protein Expressions of the Nrf2/HO-1 Pathway
2.7. Effect of SDSS on the Protein Expressions of the NF-κB Pathway
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of SDSS Cream
3.3. Animal Experiments
3.4. Determination of the Rate of Wound Healing
3.5. Histological Analysis
3.6. Biochemical Analysis
3.7. Western Blot Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Black, J.M.; Cuddigan, J.E.; Walko, M.A.; Didier, L.A.; Lander, M.J.; Kelpe, M.R. Medical device related pressure ulcers in hospitalized patients. Int. Wound J. 2010, 7, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.D.; Chen, M.X.; Du, J. Effect of Chinese herbal topical medicine, acupuncture, and moxibustion on pressure ulcer wound healing: A meta-analysis. Int. Wound J. 2022, 19, 2031–2038. [Google Scholar] [CrossRef] [PubMed]
- de Wert, L.A.; Rensen, S.S.; Soons, Z.; Poeze, M.; Bouvy, N.D.; Penders, J. The cutaneous microbiome in hospitalized patients with pressure ulcers. Sci. Rep. 2020, 10, 5963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, J.Y.; Lee, E. Risk factors for newly acquired pressure ulcer and the impact of nurse staffing on pressure ulcer incidence. J. Nurs. Manag. 2022, 30, O1–O9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, F.; Wu, Z.; Song, B.; Coyer, F.; Chaboyer, W. The effectiveness of multicomponent pressure injury prevention programs in adult intensive care patients: A systematic review. Int. J. Nurs. Stud. 2020, 102, 103483. [Google Scholar] [CrossRef] [PubMed]
- Chaboyer, W.; Bucknall, T.; Webster, J.; McInnes, E.; Gillespie, B.M.; Banks, M.; Whitty, J.A.; Thalib, L.; Roberts, S.; Tallott, M.; et al. The effect of a patient centred care bundle intervention on pressure ulcer incidence (INTACT): A cluster randomised trial. Int. J. Nurs. Stud. 2016, 64, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Amir, Y.; Lohrmann, C.; Halfens, R.J.G.; Schols, J.M.G.A. Pressure ulcers in four Indonesian hospitals: Prevalence, patient characteristics, ulcer characteristics, prevention and treatment. Int. Wound J. 2017, 14, 184–193. [Google Scholar] [CrossRef]
- Costa, I.G. Incidence of pressure ulcer in regional hospitals of Mato Grosso, Brazil. Rev. Gaúcha Enferm. 2010, 31, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Koerner, S.; Adams, D.; Harper, S.L.; Black, J.M.; Langemo, D.K. Use of thermal imaging to identify deep-tissue pressure injury on admission reduces clinical and financial burdens of hospital-acquired pressure injuries. Adv. Skin Wound Care 2019, 32, 312–320. [Google Scholar] [CrossRef]
- Hajhosseini, B.; Longaker, M.T.; Gurtner, G.C. Pressure Injury. Ann. Surg. 2020, 271, 671–679. [Google Scholar] [CrossRef]
- Cui, F.F.; Pan, Y.Y.; Xie, H.H.; Wang, X.H.; Shi, H.X.; Xiao, J.; Zhang, H.Y.; Chang, H.T.; Jiang, L.P. Pressure combined with ischemia/reperfusion injury induces deep tissue injury via endoplasmic reticulum stress in a rat pressure ulcer model. Int. J. Mol. Sci. 2016, 17, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, R.R.; Sull, A.C.; Mogford, J.E.; Roy, N.; Mustoe, T.A. A novel murine model of cyclical cutaneous ischemia-reperfusion injury. J. Surg. Res. 2004, 116, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Chen-Yoshikawa, T.F. Ischemia-reperfusion injury in lung transplantation. Cells 2021, 10, 1333. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lin, L.; Gao, L.; Wang, S.; Wu, B. Rev-erbα regulates hepatic ischemia-reperfusion injury in mice. Biochem. Biophys. Res. Commun. 2020, 529, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Thapa, K.; Singh, T.G.; Kaur, A. Targeting ferroptosis in ischemia/reperfusion renal injury. N-S Arch. Pharmacol. 2022, 395, 1331–1341. [Google Scholar] [CrossRef]
- Yoshitomi, T.; Nagasaki, Y. Self-assembling antioxidants for ischemia-reperfusion injuries. Antioxid. Redox Sign. 2022, 36, 70–80. [Google Scholar] [CrossRef]
- Cai, J.; Chen, X.; Liu, X.; Li, Z.; Shi, A.; Tang, X.; Xia, P.; Zhang, J.; Yu, P. AMPK: The key to ischemia-reperfusion injury. J. Cell. Physiol. 2022, 237, 4079–4096. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shoorei, H.; Poornajaf, Y.; Hussen, B.M.; Hajiesmaeili, Y.; Abak, A.; Taheri, M.; Eghbali, A. NLRP3: Role in ischemia/reperfusion injuries. Front. Immunol. 2022, 13, 926895. [Google Scholar] [CrossRef]
- Panconesi, R.; Widmer, J.; Carvalho, M.F.; Eden, J.; Dondossola, D.; Dutkowski, P.; Schlegel, A. Mitochondria and ischemia reperfusion injury. Curr. Opin. Organ Tran. 2022, 27, 434–445. [Google Scholar] [CrossRef]
- Groehler, A.; Kren, S.; Li, Q.; Robledo-Villafane, M.; Schmidt, J.; Garry, M.; Tretyakova, N. Oxidative cross-linking of proteins to DNA following ischemia-reperfusion injury. Free Radic. Biol. Med. 2018, 120, 89–101. [Google Scholar] [CrossRef]
- Sun, M.S.; Jin, H.; Sun, X.; Huang, S.; Zhang, F.L.; Guo, Z.N.; Yang, Y. Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy. Oxid. Med. Cell. Longev. 2018, 2018, 3804979. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Y.; Pu, J.; Fan, J.; Feng, X.Y.; Xu, J.W.; Zhang, R.; Shang, Y. Tanshinone IIA prevents acute lung injury by regulating macrophage polarization. J. Integr. Med. 2022, 20, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.A.; Ibrahim, Y.F.; Hafez, S.M.N.A.; Zenhom, N.M.; Nair, A.B.; Venugopala, K.N.; Shinu, P.; Abdel-Gaber, S.A. Paeonol attenuates hepatic ischemia/reperfusion injury by modulating the Nrf2/HO-1 and TLR4/MYD88/NF-kappa B signaling pathways. Antioxidants 2022, 11, 1687. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, N.; Lin, D.; Zang, Y. Curcumin protects against hepatic ischemia/reperfusion induced injury through inhibiting TLR4/NF-kappa B pathway. Oncotarget 2017, 8, 65414–65420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, S.W.S.; Zhu, D.Y.; Man, R.Y.K. Effects of the aqueous extract of Salvia Miltiorrhiza (Danshen) and its magnesium tanshinoate b-enriched form on blood pressure. Phytother. Res. 2010, 24, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Wu, L.; Zhang, Q.L.; Li, J.; Yin, F.X.; Yuan, Y. Pharmacokinetics of phenolic compounds of Danshen extract in rat blood and brain by microdialysis sampling. J. Ethnopharmacol. 2011, 136, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Q.; Liu, G.; Zhang, N. Therapeutic potentials and mechanisms of the Chinese traditional medicine Danshensu. Eur. J. Pharmacol. 2019, 864, 172710. [Google Scholar] [CrossRef]
- Meng, X.; Jiang, J.; Pan, H.; Wu, S.; Wang, S.; Lou, Y.; Fan, G. Preclinical absorption, distribution, metabolism, and excretion of sodium Danshensu, one of the main water-soluble ingredients in Salvia miltiorrhiza, in rats. Front. Pharmacol. 2019, 10, 554. [Google Scholar] [CrossRef]
- Wang, M.; Tang, W.; Gong, N.; Liu, P. Sodium Danshensu inhibits the progression of lung cancer by regulating PI3K/Akt signaling pathway. Drug Dev. Res. 2022, 83, 88–96. [Google Scholar] [CrossRef]
- Guo, C.; Yin, Y.; Duan, J.L.; Zhu, Y.R.; Yan, J.J.; Wei, G.; Guan, Y.; Wu, X.X.; Wang, Y.H.; Xi, M.M.; et al. Neuroprotective effect and underlying mechanism of sodium danshensu [3-(3,4-dihydroxyphenyl) lactic acid from Radix and Rhizoma Salviae miltiorrhizae = Danshen] against cerebral ischemia and reperfusion injury in rats. Phytomedicine 2015, 22, 283–289. [Google Scholar] [CrossRef]
- Gao, Q.; Deng, H.; Yang, Z.F.; Yang, Q.Y.; Zhang, Y.L.; Yuan, X.P.; Zeng, M.; Guo, M.J.; Zeng, W.Y.; Jiang, X.J.; et al. Sodium danshensu attenuates cerebral ischemia-reperfusion injury by targeting AKT1. Front. Pharmacol. 2022, 13, 946668. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, T.; Dai, J.; Zhou, Z.; Shen, C. Sodium Danshensu promotes the healing of stage 2 pressure injury wounds in ischemia/reperfusion injury rat models: Possible regulation of apoptosis and inflammatory response. J. Tradit. Chin. Med. 2021, 41, 571–580. [Google Scholar] [PubMed]
- Stoltenberg, S.; Kotila, J.; Heikkila, A.; Kvist, T.; Junttila, K. Incidence and risk factors for pressure injuries in adults in specialised medical care: A prospective observational study. J. Wound Care 2021, 30, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Tschannen, D.; Anderson, C. The pressure injury predictive model: A framework for hospital-acquired pressure injuries. J. Clin. Nurs. 2020, 29, 1398–1421. [Google Scholar] [CrossRef] [PubMed]
- Mervis, J.S.; Phillips, T.J. Pressure ulcers: Prevention and management. J. Am. Acad. Dermatol. 2019, 81, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Moore, Z.; Patton, D.; Avsar, P.; McEvoy, N.L.; Curley, G.; Budri, A.; Nugent, L.; Walsh, S.; O’Connor, T. Prevention of pressure ulcers among individuals cared for in the prone position: Lessons for the COVID-19 emergency. J. Wound Care 2020, 29, 312–320. [Google Scholar] [CrossRef]
- Yin, G.; Wang, Z.; Wang, Z.; Wang, X. Topical application of quercetin improves wound healing in pressure ulcer lesions. Exp. Dermatol. 2018, 27, 779–786. [Google Scholar] [CrossRef]
- Li, Y.X.; Fu, R.M.; Guan, Y.J.; Zhang, Z.K.; Yang, F.B.; Xiao, C.R.; Wang, Z.A.; Yu, P.; Hu, L.; Zhou, Z.N.; et al. Piezoelectric hydrogel for prophylaxis and early treatment of pressure injuries/pressure ulcers. ACS Biomater. Sci. Eng. 2022, 8, 3078–3086. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, R.B.; Li, W.Y.; Xia, F.Z.; Liu, L. Pioglitazone ameliorates retinal ischemia/reperfusion injury via suppressing NLRP3 inflammasome activities. Int. J. Ophthalmol. 2017, 10, 1812–1818. [Google Scholar]
- Machida, T.; Endo, T.H.; Oyoshi, R.; Yutani, M.; Machida, M.; Shiga, S.; Murakami, H.; Hiraide, S.; Hirafuji, M.; Iizuka, K. Abnormal pressure stress reduces interleukin-1 beta-induced cyclooxygenase-2 expression in cultured rat vascular smooth muscle cells. Biol. Pharm. Bull. 2021, 44, 853–860. [Google Scholar] [CrossRef]
- Wang, X.Y.; Gao, Z.F. Effects of dexmedetomidine pretreatment on TNF-alpha and IL-6, oxidative stress and myocardial apoptosis of rats after myocardial ischemia-reperfusion injury. Int. J. Clin. Exp. Med. 2020, 13, 1398–1405. [Google Scholar]
- Mehaffey, E.; Majid, D.S.A. Tumor necrosis factor-alpha, kidney function, and hypertension. Am. J. Physiol.-Ren. Physiol. 2017, 313, 1005–1008. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.H.; Chen, Z.L.; Yang, L.; Ding, L. Sappanone A protects against inflammation, oxidative stress and apoptosis in cerebral ischemia-reperfusion injury by alleviating endoplasmic reticulum stress. Inflammation 2021, 44, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Y.; Wang, S.; Fan, Z. Oxidative stress in intestinal ischemia-reperfusion. Front. Med. 2022, 8, 750731. [Google Scholar] [CrossRef] [PubMed]
- Yoshitomi, T.; Nagasaki, Y. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Adv. Healthc. Mater. 2014, 3, 1149–1161. [Google Scholar] [CrossRef]
- Mattera, R.; Benvenuto, M.; Giganti, M.G.; Tresoldi, I.; Pluchinotta, F.R.; Bergante, S.; Tettamanti, G.; Masuelli, L.; Manzari, V.; Modesti, A.; et al. Effects of polyphenols on oxidative stress-mediated injury in cardiomyocytes. Nutrients 2017, 9, 523. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.Q.; Xiong, X.X.; Wu, X.M.; Ye, Y.Z.; Jian, Z.H.; Zhi, Z.; Gu, L.J. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front. Mol. Neurosci. 2020, 13, 28. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.P.; Rahman, H.S. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Wang, Y.; Liu, Y. Dexmedetomidine alleviates lung ischemia-reperfusion injury in rats by activating PI3K/Akt pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 370–377. [Google Scholar]
- Romana-Souza, B.; dos Santos, J.S.; Monte-Alto-Costa, A. Caffeic acid phenethyl ester promotes wound healing of mice pressure ulcers affecting NF-κB, NOS2 and NRF2 expression. Life Sci. 2018, 207, 158–165. [Google Scholar] [CrossRef]
- Schanuel, F.S.; Saguie, B.O.; Monte-Alto-Costa, A. Olive oil promotes wound healing of mice pressure injuries through NOS-2 and Nrf2. Appl. Physiol. Nutr. Metab. 2019, 44, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Dong, H.; Wang, Q.C.; Bai, J.Z.; Li, Y.N.; Zhao, J.J.; Li, J.Z. Danshensu attenuates cisplatin-induced nephrotoxicity through activation of Nrf2 pathway and inhibition of NF-κB. Biomed. Pharmacother. 2021, 142, 111995. [Google Scholar] [CrossRef] [PubMed]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. BBA-Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Niemiec, S.M.; Louiselle, A.E.; Liechty, K.W.; Zgheib, C. Role of microRNAs in pressure ulcer immune response, pathogenesis, and treatment. Int. J. Mol. Sci. 2021, 22, 64. [Google Scholar] [CrossRef]
- Sun, S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar] [CrossRef]
- Stadler, I.; Zhang, R.Y.; Oskoui, P.; Whittaker, M.S.; Lanzafame, R.J. Development of a simple, noninvasive, clinically relevant model of pressure ulcers in the mouse. J. Investig. Surg. 2004, 17, 221–227. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Jin, H.X.; Yang, F.; Jin, S.J.; Liu, C.J.; Zhang, L.L.; Huang, J.; Wang, S.G.; Yan, Z.Y.; Cai, X.W.; et al. Physicochemical, antioxidant properties of giant croaker (Nibea japonica) swim bladders collagen and wound healing evaluation. Int. J. Biol. Macromol. 2019, 138, 483–491. [Google Scholar] [CrossRef]
- Yang, F.; Jin, S.J.; Tang, Y.P. Marine collagen peptides promote cell proliferation of NIH-3T3 fibroblasts via NF-κB signaling pathway. Molecules 2019, 24, 4201. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Shen, C. Sodium Danshensu Cream Promotes the Healing of Pressure Ulcers in Mice through the Nrf2/HO-1 and NF-κB Pathways. Pharmaceuticals 2022, 15, 1548. https://doi.org/10.3390/ph15121548
Yang F, Shen C. Sodium Danshensu Cream Promotes the Healing of Pressure Ulcers in Mice through the Nrf2/HO-1 and NF-κB Pathways. Pharmaceuticals. 2022; 15(12):1548. https://doi.org/10.3390/ph15121548
Chicago/Turabian StyleYang, Fei, and Cuizhen Shen. 2022. "Sodium Danshensu Cream Promotes the Healing of Pressure Ulcers in Mice through the Nrf2/HO-1 and NF-κB Pathways" Pharmaceuticals 15, no. 12: 1548. https://doi.org/10.3390/ph15121548
APA StyleYang, F., & Shen, C. (2022). Sodium Danshensu Cream Promotes the Healing of Pressure Ulcers in Mice through the Nrf2/HO-1 and NF-κB Pathways. Pharmaceuticals, 15(12), 1548. https://doi.org/10.3390/ph15121548