Components with Anti-Diabetic Activity Isolated from the Leaves and Twigs of Glycosmis pentaphylla Collected in Vietnam
Abstract
1. Introduction
2. Results
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Anti-Diabetic Assays
3.4.1. Cell Culture
3.4.2. GLP-1 Secretion
3.4.3. DPP-IV Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 25 August 2020).
- Health Promotion Administration, Ministry of Health and Welfare. The Information about the Diabetes Patients in Taiwan. Available online: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=359 (accessed on 25 August 2020).
- Coughlin, S.S.; Calle, E.E.; Teras, L.R.; Petrelli, J.; Thun, M.J. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am. J. Epidemiol. 2004, 159, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yeung, S.C.; Hassan, M.M.; Konopleva, M.; Abbruzzese, J.L. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 2009, 137, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Covington, M.B. Traditional Chinese Medicine in the treatment of diabetes. Diabetes Spectr. 2001, 14, 154–159. [Google Scholar] [CrossRef]
- Yang, H.J.; Kim, M.J.; Kwon, D.Y.; Kim, D.S.; Lee, Y.H.; Kim, J.E.; Park, S. Anti-diabetic activities of Gastrodia elata Blume water extracts are mediated mainly by potentiating glucose-stimulated insulin secretion and increasing β-cell mass in non-obese type 2 diabetic animals. Nutrients 2016, 8, 161. [Google Scholar] [CrossRef]
- Chien, S.C.; Young, P.H.; Hsu, Y.J.; Chen, C.H.; Tien, Y.J.; Shiu, S.Y.; Li, T.H.; Yang, C.W.; Marimuthu, P.; Tsai, L.F.; et al. Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochemistry 2009, 70, 1246–1254. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, X.; Liu, Y. Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. Int. J. Biol. Macromol. 2017, 102, 396–404. [Google Scholar] [CrossRef]
- Nash, R.J.; Kato, A.; Yu, C.-Y.; Fleet, G.W.J. Iminosugars as therapeutic agents: Recent advances and promising trends. Future Med. Chem. 2011, 3, 1513–1521. [Google Scholar] [CrossRef]
- Yang, L.-F.; Shimadate, Y.; Kato, A.; Li, Y.-X.; Jia, Y.-M.; Fleet, G.W.J.; Yu, C.-Y. Synthesis and glycosidase inhibition of N-substituted derivatives of DIM. Org. Biomol. Chem. 2020, 18, 999–1011. [Google Scholar] [CrossRef]
- Chennaiah, A.; Dahiya, A.; Dubbu, S.; Vankar, Y.D. A stereoselective synthesis of an imino glycal: Application in the synthesis of (−)-1-epi-adenophorine and a homoiminosugar. Eur. J. Org. Chem. 2018, 2018, 6574–6581. [Google Scholar] [CrossRef]
- Chennaiah, A.; Bhowmick, S.; Vankar, Y.D. Conversion of glycals into vicinal-1,2-diazides and 1,2-(or 2,1)-azidoacetates using hypervalent iodine reagents and Me3SiN3. Application in the synthesis of N-glycopeptides, pseudo-trisaccharides and an iminosugar. RSC Adv. 2017, 7, 41755–41762. [Google Scholar] [CrossRef]
- Rajasekaran, P.; Ande, C.; Vankar, Y.D. Synthesis of (5,6 & 6,6)-oxa-oxa annulated sugars as glycosidase inhibitors from 2-formyl galactal using iodocyclization as a key step. ARKIVOC 2022, 2022, 5–23. [Google Scholar]
- Green, B.D.; Liu, H.K.; McCluskey, J.T.; Duffy, N.A.; O’Harte, F.P.; McClenaghan, N.H.; Flatt, P.R. Function of a long-term, GLP-1-treated, insulin-secreting cell line is improved by preventing DPP IV-mediated degradation of GLP-1. Diabetes Obes. Metab. 2005, 7, 563–569. [Google Scholar] [CrossRef]
- Ahmed, I.; Islam, R.; Sikder, M.A.A.; Haque, M.R.; Al Mansur, M.A.; Rashid, M.A. Alkaloid, sterol and triterpenoids from Glycosmis pentaphylla (Retz.) DC. Dhaka Univ. J. Pharm. Sci. 2014, 13, 115–118. [Google Scholar] [CrossRef]
- Do, H.B.; Dang, Q.C.; Bui, X.C.; Nguyen, T.D.; Do, T.D.; Pham, V.H.; Vu, N.L.; Pham, D.M.; Pham, K.M.; Doan, T.N.; et al. Medicinal Plants and Medicinal Animals in Vietnam Episode 1 (Cây thuốc và động vật làm thuốc ở Việt Nam tập 1); Science and Technology Press: Hanoi, Vietnam, 2006; p. 541. [Google Scholar]
- Colegate, S.M.; Din, L.B.; Latiff, A.; Salleh, K.M.; Samsudin, M.W.; Skelton, B.W.; Tadano, K.; White, A.H.; Zakaria, Z. (+)-Isoaltholactone: A furanopyrone isolated from Goniothalamus species. Phytochemistry 1990, 29, 1701–1704. [Google Scholar] [CrossRef]
- Prasad, K.R.; Gholap, S.L. Stereoselective total synthesis of bioactive styryllactones (+)-goniofufurone, (+)7-epi-goniofufurone, (+)-goniopypyrone, (+)-goniotriol, (+)-altholactone, and (−)-etharvensin. J. Org. Chem. 2008, 73, 2–11. [Google Scholar] [CrossRef]
- Cavalheiro, A.J.; Yoshida, M. 6-[ω-Arylalkenyl]-5,6-dihydro-α-pyrones from Cryptocarya moschata (Lauraceae). Phytochemistry 2000, 53, 811–819. [Google Scholar] [CrossRef]
- Sharada, A.; Rao, K.L.S.; Yadav, J.S.; Rao, T.P.; Nagaiah, K. First stereoselective synthesis of (6R,7R,8S)-8-chlorogoniodiol. Synthesis 2017, 49, 2483–2487. [Google Scholar] [CrossRef]
- Lan, Y.H.; Chang, F.R.; Yu, J.H.; Yang, Y.L.; Chang, Y.L.; Lee, S.J.; Wu, Y.C. Cytotoxic styrylpyrones from Goniothalamus amuyon. J. Nat. Prod. 2003, 66, 487–490. [Google Scholar] [CrossRef]
- Yoshida, T.; Yamauchi, S.; Tago, R.; Maruyama, M.; Akiyama, K.; Sugahara, T.; Kishida, T.; Koba, Y. Syntheses of all stereoisomers of goniodiol from yeast-reduction products and their antimicrobiological activity. Biocis. Biotechnol. Biochem. 2008, 29, 2342–2352. [Google Scholar] [CrossRef][Green Version]
- Ramachandran, P.V.; Chandra, J.S.; Ram Reddy, M.V. Stereoselective syntheses of (+)-goniodiol, (−)-8-epigoniodiol, and (+)-9-deoxygoniopypyrone via alkoxyallylboration and ring-closing metathesis. J. Org. Chem. 2002, 67, 7547–7550. [Google Scholar] [CrossRef]
- Ramesh, P.; Rao, T.P. Biosynthesis-inspired total synthesis of bioactive styryllactones (+)-goniodiol, (6S,7S,8S)-goniodiol, (−)-parvistone D, and (+)-parvistone E. J. Nat. Prod. 2016, 79, 2060–2065. [Google Scholar] [CrossRef] [PubMed]
- Tai, B.H.; Huyen, V.T.; Huong, T.T.; Nhiem, N.X.; Choi, E.M.; Kim, J.A.; Long, P.Q.; Cuong, N.M.; Kim, Y.H. New pyrano-pyrone from Goniothalamus tamirensis enhances the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Chem. Pharm. Bull. 2010, 58, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Chandra Rao, D.; Shekhar, V.; Kumar Reddy, D.; Chinnababu, B.; Venkateswarlu, Y. Concise stereoselective total synthesis of leiocarpin C. Helv. Chim. Acta 2013, 96, 2179–2184. [Google Scholar] [CrossRef]
- Tanaka, H.; Woong Ahn, J.; Katayama, M.; Wada, K.; Marumo, S.; Osaka, Y. Isolation of two ovicidal substances against two-spotted spider mite, Tetranychus urticae Koch, from Skimmia repens Nakai. Agric. Biol. Chem. 1985, 49, 2189–2190. [Google Scholar] [CrossRef]
- Schuster, C.; Roennefahrt, M.; Julich-Gruner, K.K.; Jaeger, A.; Schmidt, A.W.; Knoelker, H.J. Synthesis of the pyrano[3,2-a]carbazole alkaloids koenine, koenimbine, koenigine, koenigicine, and structural reassignment of mukonicine. Synthesis 2016, 48, 150–160. [Google Scholar]
- Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K. Carbazole alkaloids from roots of Glycosmis arborea. Phytochemistry 1999, 50, 1263–1266. [Google Scholar] [CrossRef]
- Mahindroo, N.; Connelly, M.C.; Punchihewa, C.; Kimura, H.; Smeltzer, M.P.; Wu, S.; Fujii, N. Structure-activity relationships and cancer-cell selective toxicity of novel inhibitors of glioma-associated oncogene homologue 1 (Gli1) mediated transcription. J. Med. Chem. 2009, 52, 4277–4287. [Google Scholar] [CrossRef]
- Zarecki, A.P.; Kolanowski, J.L.; Markiewicz, W.T. Microwave-assisted catalytic method for a green synthesis of amides directly from amines and carboxylic acids. Molecules 2020, 25, 1761. [Google Scholar] [CrossRef]
- Itokawa, H.; Morita, M.; Mihashi, S. Phenolic compounds from the rhizomes of Alpinia speciosa. Phytochemistry 1981, 20, 2503–2506. [Google Scholar] [CrossRef]
- Seidel, V.; Bailleul, F.; Waterman, P.G. (Rel)-1β,2α-di-(2,4-dihydroxy-6-methoxybenzoyl)-3β,4α-di-(4-methoxyphenyl)-cyclobutane and other flavonoids from the aerial parts of Goniothalamus gardneri and Goniothalamus thwaitesii. Phytochemistry 2000, 55, 439–446. [Google Scholar] [CrossRef]
- Somsrisa, J.; Meepowpan, P.; Krachodnok, S.; Thaisuchat, H.; Punyanitya, S.; Nantasaen, N.; Pompimon, W. Dihydrochalcones with antiinflammatory activity from leaves and twigs of Cyathostemma argenteum. Molecules 2013, 18, 6898–6907. [Google Scholar] [CrossRef] [PubMed]
- Thuy, T.T.; Porzel, A.; Ripperger, H.; Van Sung, T.; Adam, G. Chalcones and ecdysteroids from Vitex leptobotrys. Phytochemistry 1998, 49, 2603–2605. [Google Scholar] [CrossRef]
- Zenger, K.; Agnolet, S.; Schneider, B.; Kraus, B. Biotransformation of flavokawains A, B, and C, chalcones from Kava (Piper methysticum), by human liver microsomes. J. Agric. Food Chem. 2015, 63, 6376–6385. [Google Scholar] [CrossRef]
- Wu, T.S.; Chang, F.C.; Wu, P.L. Flavonoids, amidosulfoxides and an alkaloid from the leaves of Glycosmis citrifolia. Phytochemistry 1995, 39, 1453–1457. [Google Scholar] [CrossRef]
- Hinterberger, S.; Hofer, O.; Greger, H. Synthesis and corrected structures of sulphur-containing amides from Glycosmis species: Sinharines, penimides, and illukumbins. Tetrahedron 1994, 50, 6279–6286. [Google Scholar] [CrossRef]
- Kijjoa, A.; Bessa, J.; Pinto, M.M.; Anatachoke, C.; Silva, A.M.; Eaton, G.; Herz, W. Polyoxygenated cyclohexene derivatives from Ellipeiopsis cherrevensis. Phytochemistry 2002, 59, 543–549. [Google Scholar] [CrossRef]
- Conde, S.; López-Serrano, P. Regioselective lipase-catalysed amidation of N-blocked L-and D-aspartic acid diesters. Eur. J. Org. Chem. 2002, 2002, 922–929. [Google Scholar] [CrossRef]
- Pudlo, M.; Csányi, D.; Moreau, F.; Hajós, G.; Riedl, Z.; Sapi, J. First Suzuki–Miyaura type cross-coupling of ortho-azidobromobenzene with arylboronic acids and its application to the synthesis of fused aromatic indole-heterocycles. Tetrahedron 2007, 63, 10320–10329. [Google Scholar] [CrossRef]
- Sathyanarayana, A.R.; Lu, C.-K.; Liaw, C.-C.; Chang, C.-C.; Han, H.-Y.; Green, B.D.; Huang, W.-J.; Huang, C.; He, W.-D.; Lee, L.-C.; et al. 1,2,3,4,6-Penta-O-galloyl-d-glucose interrupts the early adipocyte lifecycle and attenuates adiposity and hepatic steatosis in mice with diet-induced obesity. Int. J. Mol. Sci. 2022, 23, 4052. [Google Scholar] [CrossRef]
No. | 1 | |
---|---|---|
δH (Mult, J in Hz) | δC, Type | |
1 | – | 140.2, C |
2 | 7.39, m | 125.6, CH |
3 | 7.36, m | 128.5, CH |
4 | 7.29, m | 127.8, CH |
5 | 7.36, m | 128.5, CH |
6 | 7.39, m | 125.6, CH |
7 | 5.00, d (5.6) | 84.0, CH |
8 | 4.16, t (5.0) | 78.7, CH |
9 | 4.60, t (5.0) | 73.7, CH |
10 | 5.65, ddd (6.5, 5.6, 1.8) | 79.0, CH |
11 | 6.46, dd (11.8, 6.5) | 148.2, CH |
12 | 6.00, dd (11.8, 1.8) | 120.9, CH |
13 | – | 167.2, C |
1′ | 4.15, t (5.0) | 64.8, CH2 |
2′ | 1.66, m | 30.6, CH2 |
3′ | 1.40, m | 19.1, CH2 |
4′ | 0.95, t (7.5) | 13.6, CH3 |
No. | 2 | |
---|---|---|
δH (Mult, J in Hz) | δC, Type | |
1 | – | 134.4, C |
2 | 7.37, m | 128.9, CH |
3 | 7.29, m | 129.3, CH |
4 | 7.31, m | 127.4, CH |
5 | 7.29, m | 129.3, CH |
6 | 7.37, m | 128.9, CH |
7 | 3.62, s | 43.6, CH2 |
8 | – | 170.7, C |
1′ | – | 170.5, C |
2′ | 4.83, m | 48.6, CH |
3′ | 2.82, dd (17.0, 4.6) | 36.2, CH2 |
3.00, dd (17.0, 4.3) | ||
4′ | – | 170.8, C |
1″ | 4.19, q (7.1) | 61.8, CH2 |
2″ | 1.24, t (7.1) | 14.0, CH3 |
1‴ | 4.02, t (7.1) | 64.9, CH2 |
2‴ | 1.54, m | 30.4, CH2 |
3‴ | 1.33, m | 19.0, CH2 |
4‴ | 0.93, t (7.4) | 13.6, CH3 |
NH | 6.46, d (7.6) | – |
No. | 3 | |
---|---|---|
δH (Mult, J in Hz) | δC, Type | |
1 | 6.83, s | 96.8, CH |
1a | – | 139.6, C |
2 | – | 152.5, C |
3 | – | 116.2, C |
4 | 7.67, s | 121.4, CH |
4a | – | 117.8, C |
5 | 7.56, d (8.5) | 114.3, CH |
5a | – | 119.5, C |
6 | 6.84, d (8.5) | 106.2, CH |
7 | – | 149.4, C |
8 | – | 133.7, C |
8a | – | 134.0, C |
2-OH | 7.94, br s | – |
3-Me | 2.39, s | 16.1, CH3 |
7-OMe | 3.96, s | 56.9, CH3 |
8-OMe | 4.00, s | 60.9, CH3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.T.T.; Hsu, I.-C.; Liu, H.-K.; Lin, Y.-C.; Chen, S.-R.; Chang, F.-R.; Cheng, Y.-B. Components with Anti-Diabetic Activity Isolated from the Leaves and Twigs of Glycosmis pentaphylla Collected in Vietnam. Pharmaceuticals 2022, 15, 1543. https://doi.org/10.3390/ph15121543
Nguyen MTT, Hsu I-C, Liu H-K, Lin Y-C, Chen S-R, Chang F-R, Cheng Y-B. Components with Anti-Diabetic Activity Isolated from the Leaves and Twigs of Glycosmis pentaphylla Collected in Vietnam. Pharmaceuticals. 2022; 15(12):1543. https://doi.org/10.3390/ph15121543
Chicago/Turabian StyleNguyen, Minh Tuyet Thi, I-Chi Hsu, Hui-Kang Liu, Yu-Chi Lin, Shu-Rong Chen, Fang-Rong Chang, and Yuan-Bin Cheng. 2022. "Components with Anti-Diabetic Activity Isolated from the Leaves and Twigs of Glycosmis pentaphylla Collected in Vietnam" Pharmaceuticals 15, no. 12: 1543. https://doi.org/10.3390/ph15121543
APA StyleNguyen, M. T. T., Hsu, I.-C., Liu, H.-K., Lin, Y.-C., Chen, S.-R., Chang, F.-R., & Cheng, Y.-B. (2022). Components with Anti-Diabetic Activity Isolated from the Leaves and Twigs of Glycosmis pentaphylla Collected in Vietnam. Pharmaceuticals, 15(12), 1543. https://doi.org/10.3390/ph15121543