In Vitro, Molecular Docking and In Silico ADME/Tox Studies of Emodin and Chrysophanol against Human Colorectal and Cervical Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Molecular Docking and I -Silico Analysis
2.2. Pharmacokinetic Parameters of Emodin and Chrysophanol
2.3. Impact of Emodin and Chrysophanol on Cancer Cells Viability
2.4. Effects of Emodin and Chrysophanol on the disintegration of cancer DNA
3. Discussion
4. Materials and Methods
4.1. Chemical Structure Preparation
4.2. Receptor Molecules Preparation
4.3. Docking Studies
4.4. Drug-Likeness and ADMET
D Molecular Modeling and Interaction
4.5. Evaluation of Anticancer Activity of Emodin and Chrysophanol
4.5.1. MTT Assay
4.5.2. Morphology of Cancer Cell: DAPI Staining Assay
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsayari, A.; Wahab, S. Genus Ziziphus for the Treatment of Chronic Inflammatory Diseases. Saudi J. Biol. Sci. 2021, 28, 6897–6914. [Google Scholar] [CrossRef]
- Wahab, S.; Alshahrani, M.Y.; Ahmad, M.F.; Abbas, H. Current Trends and Future Perspectives of Nanomedicine for the Management of Colon Cancer. Eur. J. Pharmacol. 2021, 910, 174464. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wang, D.; Lu, F.; Zhao, R.; Ye, X.; He, L.; Ai, L.; Wu, C.J. Identification of the Active Substances and Mechanisms of Ginger for the Treatment of Colon Cancer Based on Network Pharmacology and Molecular Docking. BioData Min. 2021, 14, 1. [Google Scholar] [CrossRef]
- Monks, T.J.; Hanzlik, R.P.; Cohen, G.M.; Ross, D.; Graham, D.G. Quinone Chemistry and Toxicity. Toxicol. Appl. Pharmacol. 1992, 112, 2–16. [Google Scholar] [CrossRef]
- Watroly, M.N.; Sekar, M.; Fuloria, S.; Gan, S.H.; Jeyabalan, S.; Wu, Y.S.; Subramaniyan, V.; Sathasivam, K.V.; Ravi, S.; Rani, N.N.I.M.; et al. Chemistry, Biosynthesis, Physicochemical and Biological Properties of Rubiadin: A Promising Natural Anthraquinone for New Drug Discovery and Development. Drug Des. Devel. Ther. 2021, 15, 4527–4549. [Google Scholar] [CrossRef]
- Yang, F.; Yuan, P.-w.; Hao, Y.Q.; Lu, Z.M. Emodin Enhances Osteogenesis and Inhibits Adipogenesis. BMC Complement. Altern. Med. 2014, 14, 74. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Gao, J.; Pang, X.; Chen, A.; Wang, Y. Molecular mechanisms of action of emodin: As an anti-cardiovascular disease drug. Front. Pharmacol. 2020, 11, 559607. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, S.; Li, X.; Liu, R. Advances in the study of emodin: An update on pharmacological properties and mechanistic basis. Chin. Med. 2021, 16, 102. [Google Scholar] [CrossRef]
- Sougiannis, A.T.; Enos, R.T.; VanderVeen, B.N.; Velazquez, K.T.; Kelly, B.; McDonald, S.; Cotham, W.; Chatzistamou, I.; Nagarkatti, M.; Fan, D.; et al. Safety of natural anthraquinone emodin: An assessment in mice. BMC Pharmacol. Toxicol. 2021, 22, 9. [Google Scholar] [CrossRef]
- Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Huyiligeqi; Ni, J. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res. 2016, 30, 1207–1218. [Google Scholar] [CrossRef]
- Su, S.; Wu, J.; Gao, Y.; Luo, Y.; Yang, D.; Wang, P. The Pharmacological Properties of Chrysophanol, the Recent Advances. Biomed. Pharmacother. 2020, 125, 110002. [Google Scholar] [CrossRef]
- Xie, L.; Tang, H.; Song, J.; Long, J.; Zhang, L.; Li, X. Chrysophanol: A review of its pharmacology, toxicity and pharmacokinetics. J. Pharm. Pharmacol. 2019, 71, 1475–1487. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Tseng, H.F.; Hsieh, P.C.; Chiu, V.; Lin, T.Y.; Lan, C.C.; Tzeng, I.S.; Chao, H.N.; Hsu, C.C.; Kuo, C.Y. Nephroprotective role of chrysophanol in hypoxia/reoxygenation-induced renal cell damage via apoptosis, ER stress, and ferroptosis. Biomedicines 2021, 9, 1283. [Google Scholar] [CrossRef]
- Ren, L.; Li, Z.; Dai, C.; Zhao, D.; Wang, Y.; Ma, C.; Liu, C. Chrysophanol Inhibits Proliferation and Induces Apoptosis through NF-ΚB/Cyclin D1 and NF-ΚB/Bcl-2 Signaling Cascade in Breast Cancer Cell Lines. Mol. Med. Rep. 2018, 17, 4376–4382. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Wang, C.; Li, D.; Hou, H. Novel Anthraquinone Compounds as Anticancer Agents and Their Potential Mechanism. Future Med. Chem. 2020, 12, 627–644. [Google Scholar] [CrossRef]
- Ma, X.H.; Shi, Z.; Tan, C.; Jiang, Y.; Go, M.L.; Low, B.C.; Chen, Y.Z. In-Silico Approaches to Multi-Target Drug Discovery Computer Aided Multi-Target Drug Design, Multi-Target Virtual Screening. Pharm. Res. 2010, 27, 739–749. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2018, 18, 41–58. [Google Scholar] [CrossRef]
- Morgan, I.; Wessjohann, L.A.; Kaluderović, G.N. In Vitro Anticancer Screening and Preliminary Mechanistic Study of A-Ring Substituted Anthraquinone Derivatives. Cells 2022, 11, 168. [Google Scholar] [CrossRef]
- Demirezer, L.O.; Ozenver, N.; Uzun, M.; Yukselen, O.; Guvenalp, Z.; Sezerman, O.U. Molecular Docking of Anthranoids on Some Targeted Human Proteins. Fabad J. Pharm. Sci. 2016, 41, 1–16. [Google Scholar]
- Tan, Z.; Chen, L.; Zhang, S. Comprehensive Modeling and Discovery of Mebendazole as a Novel TRAF2- and NCK-Interacting Kinase Inhibitor. Sci. Rep. 2016, 6, 33534. [Google Scholar] [CrossRef]
- Paudel, P.; Shrestha, S.; Park, S.E.; Seong, S.H.; Fauzi, F.M.; Jung, H.A.; Choi, J.S. Emodin Derivatives as Multi-Target-Directed Ligands Inhibiting Monoamine Oxidase and Antagonizing Vasopressin V1Areceptors. ACS Omega 2020, 5, 26720–26731. [Google Scholar] [CrossRef]
- Vekariya, M.K.; Vekariya, R.H.; Brahmkshatriya, P.S.; Shah, N.K. Pyrimidine-Based Pyrazoles as Cyclin-Dependent Kinase 2 Inhibitors: Design, Synthesis, and Biological Evaluation. Chem. Biol. Drug Des. 2018, 92, 1683–1691. [Google Scholar] [CrossRef]
- Schang, L.M. Discovery of the Antiviral Activities of Pharmacologic Cyclin-Dependent Kinase Inhibitors: From Basic to Applied Science. Expert Rev. Anti-Infect. Ther. 2005, 3, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Kashaw, S.K.; Agarwal, S.; Mishra, M.; Sau, S.; Iyer, A.K. Molecular Docking Analysis of Caspase-3 Activators as Potential Anticancer Agents. Curr. Comput.-Aided Drug Des. 2018, 15, 55–66. [Google Scholar] [CrossRef]
- Asadi, M.; Shanehbandi, D.; Kermani, T.A.; Sanaat, Z.; Zafari, V.; Hashemzadeh, S. Expression Level of Caspase Genes in Colorectal Cancer. Asian Pac. J. Cancer Prev. 2018, 19, 1277–1280. [Google Scholar] [CrossRef]
- Ramos, J.; Muthukumaran, J.; Freire, F.; Paquete-Ferreira, J.; Otrelo-Cardoso, A.R.; Svergun, D.; Panjkovich, A.; Santos-Silva, T. Shedding Light on the Interaction of Human Anti-Apoptotic Bcl-2 Protein with Ligands through Biophysical and in Silico Studies. Int. J. Mol. Sci. 2019, 20, 860. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of Apoptosis in Health and Disease: The Balancing Act of BCL-2 Family Proteins. Nat. Rev. Mol. Cell Biol. 2019, 20, 175–193. [Google Scholar]
- Shukla, S.; Dass, J.; Pujani, M. P53 and Bcl2 Expression in Malignant and Premalignant Lesions of Uterine Cervix and Their Correlation with Human Papilloma Virus 16 and 18. South Asian J. Cancer 2014, 3, 48–53. [Google Scholar] [CrossRef]
- Saunders, I.T.; Mir, H.; Kapur, N.; Singh, S. Emodin inhibits colon cancer by altering BCL-2 family proteins and cell survival pathways. Cancer Cell Int. 2019, 19, 98. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Tian, S.; Zhu, J.; Li, K.-T.; Yu, T.-H.; Yu, L.-H.; Bai, D.-Q. Exploring a Novel Target Treatment on Breast Cancer: Aloe-Emodin Mediated Photodynamic Therapy Induced Cell Apoptosis and Inhibited Cell Metastasis. Anticancer Agents Med. Chem. 2016, 16, 763–770. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Q.; He, X.; Wei, H.; Wang, T.; Shao, J.; Jiang, X. Emodin Induces Apoptosis of Colon Cancer Cells via Induction of Autophagy in a ROS-Dependent Manner. Oncol. Res. 2018, 26, 889–899. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, W.; Bousquenaud, M.; Cattin, S.; Zaric, J.; Sun, L.K.; Rüegg, C. Emodin Inhibits Inflammation, Carcinogenesis, and Cancer Progression in the AOM/DSS Model of Colitis-Associated Intestinal Tumorigenesis. Front. Oncol. 2021, 10, 564674. [Google Scholar] [CrossRef]
- Xu, K.; Zhou, T.; Huang, Y.; Chi, Q.; Shi, J.; Zhu, P.; Dong, N. Anthraquinone emodin inhibits tumor necrosis factor alpha-induced calcification of human aortic valve interstitial cells via the NF-κB pathway. Front. Pharmacol. 2018, 9, 1328. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shan, C.; Wu, Z.; Yu, H.; Yang, A.; Tan, B. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1alpha/VEGF signaling pathway. Inflamm. Res. 2020, 69, 365–373. [Google Scholar] [CrossRef]
- Trybus, W.; Król, T.; Trybus, E.; Stachurska, A.; Król, G.; Kopacz-Bednarska, A. Emodin Induces Death in Human Cervical Cancer Cells through Mitotic Catastrophe. Anticancer Res. 2019, 39, 679–686. [Google Scholar] [CrossRef]
- Tang, Q.; Zhao, S.; Wu, J.; Zheng, F.; Yang, L.; Hu, J.; Hann, S.S. Inhibition of integrin-linked kinase expression by emodin through crosstalk of AMPKα and ERK1/2 signaling and reciprocal interplay of Sp1 and c-Jun. Cell. Signal. 2015, 27, 1469–1477. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, Y.; Li, J.; Duan, Y.; Zhao, H.; Gao, L.; Luo, Y. Neuroprotective effects of chrysophanol against inflammation in middle cerebral artery occlusion mice. Neurosci. Lett. 2016, 630, 16–22. [Google Scholar] [CrossRef]
- Lu, C.C.; Yang, J.S.; Huang, A.C.; Hsia, T.C.; Chou, S.T.; Kuo, C.L. Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells. Mol. Nutr. Food Res. 2010, 54, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Xue, Y.; Xu, L.; Wang, Q.; Wei, J.; Ke, X.; Wang, J.; Chen, X. Chrysophanol exhibits inhibitory activities against colorectal cancer by targeting decorin. Cell Biochem. Funct. 2020, 38, 47–57. [Google Scholar] [CrossRef]
- Pandith, S.A.; Hussain, A.; Bhat, W.W.; Dhar, N.; Qazi, A.K.; Rana, S.; Razdan, S.; Wani, T.A.; Shah, M.A.; Bedi, Y.S.; et al. Evaluation of Anthraquinones from Himalayan Rhubarb (Rheum Emodi Wall. Ex Meissn.) as Antiproliferative Agents. South Afr. J. Bot. 2014, 95, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Molecular Networks GmbH CORINA Classic. Available online: https://mn-am.com/products/corina/ (accessed on 4 June 2022).
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM General Force Field (CGenFF): A Force Field for Drug-like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31, 671. [Google Scholar] [CrossRef]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software News and Updates AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Jamal, Q.M.S.; Ahmad, V.; Alharbi, A.H.; Ansari, M.A.; Alzohairy, M.A.; Almatroudi, A.; Alghamdi, S.; Alomary, M.N.; AlYahya, S.; Shesha, N.T.; et al. Therapeutic Development by Repurposing Drugs Targeting SARS-CoV-2 Spike Protein Interactions by Simulation Studies. Saudi J. Biol. Sci. 2021, 28, 4560–4568. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Huey, R.; Olson, A.J. Distributed Automated Docking of Flexible Ligands to Proteins: Parallel Applications of AutoDock 2.4. J. Comput.-Aided Mol. Des. 1996, 10, 293–304. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Jamal, Q.M.S.; Siddiqui, M.U.; Alharbi, A.H.; Albejaidi, F.; Akhtar, S.; Alzohairy, M.A.; Kamal, M.A.; Kesari, K.K. A Computational Study of Natural Compounds from Bacopa Monnieri in the Treatment of Alzheimer’s Disease. Curr. Pharm. Des. 2020, 26, 790–800. [Google Scholar] [CrossRef]
- SwissADME. Available online: http://www.swissadme.ch/ (accessed on 4 June 2022).
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Ravikiran, T.; Anand, S.; Ansari, M.A.; Alomary, M.N.; Alyahya, S.; Ramachandregowda, S.; Alghamdi, S.; Kariyappa, A.S.; Dundaiah, B.; Gopinath, M.M.; et al. Fabrication and in Vitro Evaluation of 4-Hia Encapsulated Plga Nanoparticles on Pc12 Cells. Int. J. Nanomed. 2021, 16, 5621–5632. [Google Scholar] [CrossRef]
- Ansari, M.A.; Akhtar, S.; Rauf, M.A.; Alomary, M.N.; Alyahya, S.; Alghamdi, S.; Almessiere, M.A.; Baykal, A.; Khan, F.; Adil, S.F.; et al. Sol–Gel Synthesis of Dy-Substituted Ni0.4cu0.2zn0.4 (Fe2-Xdyx)O4 Nano Spinel Ferrites and Evaluation of Their Antibacterial, Antifungal, Antibiofilm and Anticancer Potentialities for Biomedical Application. Int. J. Nanomed. 2021, 16, 5633–5650. [Google Scholar] [CrossRef]
Receptor Name | Estimated Free Energy of Binding (Kcal/mol) | H-Bond Details | H-Bond Length (A0) | Inhibition Constant (Ki) | Interacting Residues Involved in Hydrophobic Interaction (van der Waals) | Alkyl/Pi-Alkyl/Pi-Sigma |
---|---|---|---|---|---|---|
Caspase-3 (PDB:4QU8) | −7.42 | A:HIS121:HD1-:UNK1:O19 | 2.03306 | 3.61 uM | SER205,GLN161,ARG64,ALA162,SER120,GLY122,TYR204 | Pi-Alkyl = PHE256 Pi-Pi T-shaped= TRP206 PI-CATION = ARG207 |
A:ARG207:HN-:UNK1:O14 | 2.61505 | |||||
:UNK1:H29-A:CYS163:SG | 3.86125 | |||||
A:ARG207:NH1-:UNK1 | 1.98608 | |||||
Apoptosis regulator Bcl-2 (PDB:4MAN) | −6.55 | NA | NA | 15.69 uM | ALA146,PHE150,GLU149,VAL153,PHE109,PHE101,TYR105,ASP108,VAL130,GLU133 | ALKYL/PI-ALKYL = LEU134 Pi-sigma = MET112 |
TRAF2 and NCK-interacting protein kinase (PDB: 2X7F) | −8.15 | A:GLY32:CA-:UNK1:O8 | 3.26587 | 1.05 uM | MET105,PHE107,GLY111, | ALKYL/PI-ALKYL = ALA83,ALA52,VAL39 PI-SIGMA = VAL170,LEU160,VAL31 |
:UNK1:H30-A:GLU106:O | 2.20444 | |||||
:UNK1:H26-A:TYR36:OH | 2.13319 | |||||
A:CYS108:HN-:UNK1:O14 | 1.79344 | |||||
Cyclin-dependent protein kinase 2 (PDB:6GUE) | −7.61 | :UNK1:H26-A:LEU83:O | 1.83759 | 2.63 uM | GLY11,LYS89,GLN85,PHE82 | ALKYL/PI-ALKYL = ILE10,VAL18,PHE80,ALA31,VAL64 PI-SIGMA = LEU134 |
:UNK1:H30-A:ASP86:OD2 | 1.73228 |
Receptor Name | Free Energy of Binding (Kcal/mol) | Hydrogen Bond Details | H-Bond Length | Inhibition Constant (Ki) | Interacting Residues Involved in Hydrophobic Interaction (Van der Waals) | Alkyl/Pi-Alkyl/Pi-Sigma |
---|---|---|---|---|---|---|
Caspase-3 (PDB:4QU8) | −7.37 | A:ARG64:HH21-:UNK1:O19 | 2.27807 | 3.97 uM | HIS121,GLY122,SER120,ALA162,GLN161,SER205,TYR204 | Pi-Alkyl = PHE256 Pi-Pi T-shaped = TRP206 |
A:ARG207:HN-:UNK1:O10 | 2.58829 | |||||
A:ARG207:HE-:UNK1:O10 | 2.99886 | |||||
A:ARG207:HE-:UNK1:O19 | 2.01928 | |||||
:UNK1:H25-A:ARG207:O | 2.82811 | |||||
Apoptosis regulator Bcl-2 (PDB:4MAN) | −6.83 | NA | NA | 9.79 uM | ASP108,TYR105,PHE101,GLU149,PHE150,ALA146,VAL130 | VAL153,PHE109 Pi-sigma = LEU134,MET112 |
TRAF2 and NCK-interacting protein kinase (PDB: 2X7F) | −8.25 | A:CYS108:HN-:UNK1:O19 | 1.93541 | 899.29 nM | PHE107,ALA83,ASP171,GLY32 | ALKYL/PI-ALKYL = VAL31,ALA52,VAL39,LYS54,MET105 Pi-Pi T-shaped = TYR36 PI-SIGMA = LEU160,VAL170 |
:UNK1:H25-:UNK1:O10 | 2.08381 | |||||
Cyclin-dependent protein kinase-2 (PDB: 6GUE) | −7.71 | A:LEU83:HN-:UNK1:O10 | 2.73142 | 2.22 uM | GLN85,HIS84,ASP86,PHE82,GLU81,ASP145,VAL18 | ALKYL/PI-ALKYL = ALA31,VAL64,ALA144 PI-SIGMA = ILE10,LEU134,PHE80 |
:UNK1:H29-A:LEU83:O | 1.76833 |
Receptor Name | Estimated Free Energy of Binding (Kcal/mol) | Inhibition Constant (Ki) | H-Bond Name | H Bond LENGTH (Angstrom) |
---|---|---|---|---|
Caspase-3 (PDB:4QU8) | −4.10 | 986.76uM | A:ARG64:HH21-:UNK0:O | 2.18984 |
A:GLN161:HE21-:UNK0:O | 2.33823 | |||
A:CYS163:HN-:UNK0:N | 2.17761 | |||
A:ARG207:HE-:UNK0:F | 2.09034 | |||
:UNK0:H1-A:SER120:O | 1.94467 | |||
:UNK0:H1-A:GLN161:O | 2.53344 | |||
:UNK0:H2-A:GLY122:O | 2.29135 | |||
Apoptosis regulator Bcl-2 (PDB:4MAN) | −2.64 | 11.67mM | A:ARG106:HN-:UNK0:N | 2.40095 |
A:ARG107:HN-:UNK0:N | 2.10937 | |||
A:ASP108:HN-:UNK0:O | 1.8044 | |||
:UNK0:H1-A:ASP108:OD2 | 1.83811 | |||
:UNK0:H2-A:ARG104:O | 2.96844 | |||
TRAF2 and NCK-interacting protein kinase (PDB: 2X7F) | −3.89 | 1.40 mM | :UNK0:H1-A:GLU69:OE1 | 1.67651 |
:UNK0:H2-A:LEU169:O | 2.01299 | |||
A:ASP171:HN-:UNK0 | 2.44016 | |||
Cyclin-dependent protein kinase-2 (PDB:6GUE) | −5.82 | 54.62uM | A:LYS33:HZ1-:UNK0:F | 2.09629 |
A:LEU83:HN-:UNK0:O | 2.38077 | |||
A:ASP145:HN-:UNK0:O | 2.06687 | |||
:UNK0:O-A:GLU81:O | 3.1013 | |||
:UNK0:O-A:PHE80 | 4.03351 |
Receptor Name | Anticancer Drug Fluorouracil Estimated Free Energy of Binding (Kcal/mol) | Emodin Estimated Free Energy of Binding (Kcal/mol) | Chrysophanol Estimated Free Energy of Binding (Kcal/mol) |
---|---|---|---|
Caspase-3 (PDB:4QU8) | −4.10 | −7.42 | −7.37 |
Apoptosis regulator Bcl-2 (PDB:4MAN) | −2.64 | −6.55 | −6.83 |
TRAF2 and NCK-interacting protein kinase (PDB: 2X7F) | −3.89 | −8.15 | −8.25 |
Cyclin-dependent protein kinase-2 (PDB:6GUE) | −5.82 | −7.61 | −7.71 |
Compounds | GI Absorption | BBB Permeant | Pgp Substrate | CYP1A2 Inhibitor | CYP2C19 Inhibitor | CYP2C9 Inhibitor | CYP2D6 Inhibitor | CYP3A4 Inhibitor | log Kp (cm/s) |
---|---|---|---|---|---|---|---|---|---|
Chrysophanol | High | Yes | No | Yes | No | No | No | Yes | −5.34 |
Emodin | High | No | No | Yes | No | No | No | Yes | −6.02 |
Compounds | MW (g/mol) | Rotatable Bonds | H-Bond Acceptors | H-Bond Donors | TPSA (Å2) | Consensus Log P | Lipinski Violations | Ghose Violations | Veber Violations | Egan Violations | Muegge Violations | Bioavailability Score | Synthetic Accessibility |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chrysophanol | 254.24 | 0 | 4 | 2 | 74.60 | 2.38 | 0 | 0 | 0 | 0 | 0 | 0.55 | 2.47 |
Emodin | 270.24 | 0 | 5 | 3 | 94.83 | 1.87 | 0 | 0 | 0 | 0 | 0 | 0.55 | 2.57 |
S.No | Compounds | AMES Toxicity | Max. Tolerated Dose (Human) | hERG I Inhibitor | hERG II Inhibitor | Oral Rat Acute Toxicity (LD50) | Oral Rat Chronic Toxicity (LOAEL) | Hepatotoxicity | Skin Sensitization | T. pyriformis Toxicity | Minnow Toxicity |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Chrysophanol | Yes | −0.256 | No | No | 2.275 | 2.057 | No | No | 0.794 | 1.603 |
2 | Emodin | No | 0.158 | No | No | 2.116 | 2.074 | No | No | 0.536 | 2.057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, W.; Ansari, M.A.; Alsayari, A.; Almaghaslah, D.; Wahab, S.; Alomary, M.N.; Jamal, Q.M.S.; Khan, F.A.; Ali, A.; Alam, P.; et al. In Vitro, Molecular Docking and In Silico ADME/Tox Studies of Emodin and Chrysophanol against Human Colorectal and Cervical Carcinoma. Pharmaceuticals 2022, 15, 1348. https://doi.org/10.3390/ph15111348
Ahmad W, Ansari MA, Alsayari A, Almaghaslah D, Wahab S, Alomary MN, Jamal QMS, Khan FA, Ali A, Alam P, et al. In Vitro, Molecular Docking and In Silico ADME/Tox Studies of Emodin and Chrysophanol against Human Colorectal and Cervical Carcinoma. Pharmaceuticals. 2022; 15(11):1348. https://doi.org/10.3390/ph15111348
Chicago/Turabian StyleAhmad, Wasim, Mohammad Azam Ansari, Abdulrhman Alsayari, Dalia Almaghaslah, Shadma Wahab, Mohammad N. Alomary, Qazi Mohammad Sajid Jamal, Firdos Alam Khan, Abuzer Ali, Prawez Alam, and et al. 2022. "In Vitro, Molecular Docking and In Silico ADME/Tox Studies of Emodin and Chrysophanol against Human Colorectal and Cervical Carcinoma" Pharmaceuticals 15, no. 11: 1348. https://doi.org/10.3390/ph15111348
APA StyleAhmad, W., Ansari, M. A., Alsayari, A., Almaghaslah, D., Wahab, S., Alomary, M. N., Jamal, Q. M. S., Khan, F. A., Ali, A., Alam, P., & Elderdery, A. Y. (2022). In Vitro, Molecular Docking and In Silico ADME/Tox Studies of Emodin and Chrysophanol against Human Colorectal and Cervical Carcinoma. Pharmaceuticals, 15(11), 1348. https://doi.org/10.3390/ph15111348