Radioimmunotherapy Targeting IGF2R on Canine-Patient-Derived Osteosarcoma Tumors in Mice and Radiation Dosimetry in Canine and Pediatric Models
Abstract
:1. Introduction
2. Results
2.1. Biodistribution and Microspect/CT Imaging Demonstrated a High Uptake of the IF3 Antibody in Canine-Patient-Derived Gracie Tumors
2.2. Dosimetry Calculations Identified the Organs to Receive the Highest Radiation Dose in a Canine and Pediatric Patient
2.3. RIT with 177Lu-IF3 Was Highly Effective in Abrogating Canine-Patient-Derived-Gracie-Tumor Growth in SCID Mice
2.4. Immunohistochemistry of Canine Spleens Demonstrated Low Expression of IGF2R
3. Discussion
4. Materials and Methods
4.1. Antibody, Radionuclides and Radiolabeling
4.2. Animal Models
4.3. Biodistribution and MicroSPECT/CT of 111In-Labeled IF3 in Tumor-Bearing Mice
4.4. Dosimetry Calculations
4.5. Therapy of 177Lu-Labeled IF3 in Tumor-Bearing Mice
4.6. Immunohistochemistry
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, M.A.; Gurney, J.G.; Ries, L.A. Cancer in adolescents 15 to 19 years old. In Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995; Pub, #99-4649; Ries, L.A., Smith, M.A., Gurney, J.G., Linet, M., Tamra, T., Young, J.L., Bunin, G.R., Eds.; National Cancer Institute: Bethesda, MD, USA, 1999; pp. 110–115. [Google Scholar]
- Gill, J.; Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol. 2021, 18, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Ladanyi, M.G.R. Molecular pathology and molecular pharmacology of osteosarcoma. Pediatric Pathol. Mol. Med. 2020, 19, 391–413. [Google Scholar]
- Simpson, S.; Dunning, M.D.; de Brot, S.; Grau-Roma, L.; Mongan, N.P.; Rutland, C.S. Comparative review of human and canine osteosarcoma: Morphology, epidemiology, prognosis, treatment and genetics. Acta Vet. Scand. 2017, 59, 71. [Google Scholar] [CrossRef] [PubMed]
- Haines, D.M.; Bruland, S. Immunohistochemical detection of osteosarcoma-associated antigen in canine osteosarcoma. Anticancer Res. 1989, 9, 903–907. [Google Scholar]
- Bruland, S.; Skretting, A.; Solheim, P.; Aas, M. Targeted Radiotherapy of Osteosarcoma Using153Sm-Edtmp: A new promising approach. Acta Oncol. 1996, 35, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.E.; Ba, M.B.; Kim, M.Y.; Lin, J.; Bs, S.P.; Gorlick, R.; Geller, D.S. Cell surface receptor expression patterns in osteosarcoma. Cancer 2011, 118, 740–749. [Google Scholar] [CrossRef]
- Savage, S.A.; Woodson, K.; Walk, E.; Modi, W.; Liao, J.; Douglass, C.; Hoover, R.N.; Chanock, S.J. Analysis of Genes Critical for Growth Regulation Identifies Insulin-like Growth Factor 2 Receptor Variations with Possible Functional Significance as Risk Factors for Osteosarcoma. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1667–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boisclair, C.; Dickinson, R.M.; Dadachova, E.; MacDonald-Dickinson, V. Characterisation of IGF2R expression in canine appendicular osteosarcoma. Pharmaceuticals 2021. in review. [Google Scholar]
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef]
- Geller, D.S.; Morris, J.; Revskaya, E.; Kahn, M.; Zhang, W.; Piperdi, S.; Park, A.; Koirala, P.; Guzik, H.; Hall, C.; et al. Targeted therapy of osteosarcoma with radiolabeled monoclonal antibody to an insulin-like growth factor-2 receptor (IGF2R). Nucl. Med. Biol. 2016, 43, 812–817. [Google Scholar] [CrossRef] [Green Version]
- Karkare, S.; Allen, K.J.H.; Jiao, R.; Malo, M.E.; Dawicki, W.; Helal, M.; Godson, D.L.; Dickinson, R.; MacDonald-Dickinson, V.; Yang, R.; et al. Detection and targeting insulin growth factor receptor type 2 (IGF2R) in osteosarcoma PDX in mouse models and in canine osteosarcoma tumors. Sci. Rep. 2019, 9, 11476. [Google Scholar] [CrossRef] [PubMed]
- Broqueza, J.; Prabaharan, C.B.; Andrahennadi, S.; Allen, K.J.H.; Dickinson, R.; MacDonald-Dickinson, V.; Dadachova, E.; Uppalapati, M. Novel Human Antibodies to Insulin Growth Factor 2 Receptor (IGF2R) for Radioimmunoimaging and Therapy of Canine and Human Osteosarcoma. Cancers 2021, 13, 2208. [Google Scholar] [CrossRef]
- Brulin, B.; Nolan, J.C.; Marangon, T.; Kovacevic, M.; Chatelais, M.; Meheust, P.; Abadie, J.; Le Nail, L.-R.; Rosset, P.; Brennan, M.; et al. Evaluation of the Chemotherapy Drug Response Using Organotypic Cultures of Osteosarcoma Tumours from Mice Models and Canine Patients. Cancers 2021, 13, 4890. [Google Scholar] [CrossRef]
- Deguchi, T.; Hosoya, K.; Kim, S.; Murase, Y.; Yamamoto, K.; Bo, T.; Yasui, H.; Inanami, O.; Okumura, M. Metformin preferentially enhances the radio-sensitivity of cancer stem-like cells with highly mitochondrial respiration ability in HMPOS. Mol. Ther.-Oncolytics 2021, 22, 143–151. [Google Scholar] [CrossRef]
- Freireich, E.J.; Gehan, E.A.; Rall, D.P.; Schmidt, L.H.; Skipper, H.E. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother. Rep. 1966, 50, 219–244. [Google Scholar] [PubMed]
- Svensson, J.; Hagmarker, L.; Magnander, T.; Wängberg, B.; Bernhardt, P. Radiation exposure of the spleen during 177Lu-DOTATATE treatment and its correlation with haematological toxicity and spleen volume. EJNMMI Phys. 2016, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennrich, U.; Kopka, K. Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharmaceuticals 2019, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Emami, B.; Lyman, J.; Brown, A.; Cola, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 109–122. [Google Scholar] [CrossRef]
- Ober, R.J.; Radu, C.G.; Ghetie, V.; Ward, E.S. Differences in promiscuity for antibody-FcRn interactions across species: Implications for therapeutic antibodies. Int. Immunol. 2001, 13, 1551–1559. [Google Scholar] [CrossRef] [Green Version]
- Molina-Trinidad, E.M.; de Murphy, C.A.; Ferro-Flores, G.; Murphy-Stack, E.; Jung-Cook, H. Radiopharmacokinetic and dosimetric parameters of Re-188-lanreotide in athymic mice with induced human cancer tumors. Int. J. Pharm. 2006, 310, 125. [Google Scholar] [CrossRef] [PubMed]
- Stabin, M.G.; Sparks, R.B.; Crowe, E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 2005, 46, 1023–1027. [Google Scholar] [PubMed]
- Harris, L.K.I.P.; Crocker, P.N.; Baker, J.D.; Aplin, M. Westwood IGF2 actions on trophoblast in human placenta are regulated by the insulin-like growth factor 2 receptor, which can function as both a signaling and clearance receptor. Biol. Reprod. 2011, 84, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
32 kg Human Model | 9.45 kg Dog Model | |||
---|---|---|---|---|
Target Organ | mSv/MBq | cGy/mCi | mSv/MBq | cGy/mCi |
Adrenals | 0.0434 | 0.161 | -- | -- |
Brain | 0.0107 | 0.0396 | 0.0740 | 0.274 |
Heart Wall | 0.0469 | 0.174 | 0.166 | 0.614 |
Eyes | 0.00166 | 0.00614 | 0.0204 | 0.755 |
Gallbladder Wall | 0.00376 | 0.0139 | 0.0454 | 0.168 |
Small Intestine | 0.0640 | 0.237 | 0.0753 | 0.279 |
Stomach Wall | 0.0116 | 0.0429 | 0.0848 | 0.314 |
Large Intestine | -- | -- | 0.120 | 0.444 |
Right colon | 0.0695 | 0.257 | -- | -- |
Rectum | 0.00116 | 0.00429 | -- | -- |
Kidneys | 0.0886 | 0.328 | 0.0885 | 0.327 |
Liver | 0.0648 | 0.240 | 0.0638 | 0.236 |
Lungs | 0.397 | 1.47 | 0.0577 | 0.213 |
Pancreas | 0.509 | 1.88 | 0.0792 | 0.293 |
Tumor | 0.785 | 2.90 | 0.377 | 1.39 |
Red Marrow | 0.00300 | 0.0111 | -- | -- |
Skeletal Surfaces | 0.607 | 2.25 | 0.0584 | 0.216 |
Bone spine | 0.211 | 0.781 | 0.0185 | 0.0685 |
Spleen | 3.06 | 11.3 | 0.230 | 0.851 |
Thymus | 0.00752 | 0.0203 | 0.0242 | 0.0895 |
Thyroid | 0.00610 | 0.0226 | 0.00410 | 0.0152 |
Urinary Bladder | 0.000838 | 0.00310 | 0.0421 | 0.156 |
Blood | 0.0210 | 0.0777 | 0.0210 | 0.0777 |
Muscle | 0.0790 | 0.292 | 0.0790 | 0.292 |
Total Body | 0.0496 | 0.183 | 0.0256 | 0.0947 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broqueza, J.; Prabaharan, C.B.; Allen, K.J.H.; Jiao, R.; Fisher, D.R.; Dickinson, R.; MacDonald-Dickinson, V.; Uppalapati, M.; Dadachova, E. Radioimmunotherapy Targeting IGF2R on Canine-Patient-Derived Osteosarcoma Tumors in Mice and Radiation Dosimetry in Canine and Pediatric Models. Pharmaceuticals 2022, 15, 10. https://doi.org/10.3390/ph15010010
Broqueza J, Prabaharan CB, Allen KJH, Jiao R, Fisher DR, Dickinson R, MacDonald-Dickinson V, Uppalapati M, Dadachova E. Radioimmunotherapy Targeting IGF2R on Canine-Patient-Derived Osteosarcoma Tumors in Mice and Radiation Dosimetry in Canine and Pediatric Models. Pharmaceuticals. 2022; 15(1):10. https://doi.org/10.3390/ph15010010
Chicago/Turabian StyleBroqueza, Jaline, Chandra B. Prabaharan, Kevin J. H. Allen, Rubin Jiao, Darrell R. Fisher, Ryan Dickinson, Valerie MacDonald-Dickinson, Maruti Uppalapati, and Ekaterina Dadachova. 2022. "Radioimmunotherapy Targeting IGF2R on Canine-Patient-Derived Osteosarcoma Tumors in Mice and Radiation Dosimetry in Canine and Pediatric Models" Pharmaceuticals 15, no. 1: 10. https://doi.org/10.3390/ph15010010
APA StyleBroqueza, J., Prabaharan, C. B., Allen, K. J. H., Jiao, R., Fisher, D. R., Dickinson, R., MacDonald-Dickinson, V., Uppalapati, M., & Dadachova, E. (2022). Radioimmunotherapy Targeting IGF2R on Canine-Patient-Derived Osteosarcoma Tumors in Mice and Radiation Dosimetry in Canine and Pediatric Models. Pharmaceuticals, 15(1), 10. https://doi.org/10.3390/ph15010010