Comparison of Multidrug Use in the General Population and among Persons with Diabetes in Denmark for Drugs Having Pharmacogenomics (PGx) Based Dosing Guidelines
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Register Data
4.2. Statistics
4.3. Clinical Dosing Guidelines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cacabelos, R.; Cacabelos, N.; Carril, J.C. The role of pharmacogenomics in adverse drug reactions. Expert Rev. Clin. Pharmacol. 2019, 12, 407–442. [Google Scholar] [CrossRef]
- Dong, A.N.; Tan, B.H.; Pan, Y.; Ong, C.E. Cytochrome P450 genotype-guided drug therapies: An update on current states. Clin. Exp. Pharmacol. Physiol. 2018, 45, 991–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahar, M.A.; Setiawan, D.; Hak, E.; Wilffert, B. Pharmacogenetics of drug–drug interaction and drug–drug–gene interaction: A systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics 2017, 18, 701–739. [Google Scholar] [CrossRef] [PubMed]
- Introduction: Standards of medical care in diabetes-2021. Diabetes Care 2021, 44, S1–S2. [CrossRef]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabeto 2019, 62, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Ogurtsova, K.; Da, J.D.; Fernandes, R.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Carstensen, B.; Rønn, P.F.; Jørgensen, M.E. Prevalence, incidence and mortality of type 1 and type 2 diabetes in Denmark 1996-2016. BMJ Open Diabetes Res. Care 2020, 8, e001071. [Google Scholar] [CrossRef] [PubMed]
- Dobrică, E.C.; Găman, M.A.; Cozma, M.A.; Bratu, O.G.; Stoian, A.P.; Diaconu, C.C. Polypharmacy in type 2 diabetes mellitus: Insights from an internal medicine department. Medicina 2019, 55, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwhaibi, M.; Balkhi, B.; Alhawassi, T.M.; Alkofide, H.; Alduhaim, N.; Alabdulali, R.; Drweesh, H.; Sambamoorthi, U. Polypharmacy among patients with diabetes: A cross-sectional retrospective study in a tertiary hospital in Saudi Arabia. BMJ Open 2018, 8, 20852. [Google Scholar] [CrossRef]
- Brath, H.; Mehta, N.; Savage, R.D.; Gill, S.S.; Wu, W.; Bronskill, S.E.; Zhu, L.; Gurwitz, J.H.; Rochon, P.A. What Is Known About Preventing, Detecting, and Reversing Prescribing Cascades: A Scoping Review. J. Am. Geriatr. Soc. 2018, 66, 2079–2085. [Google Scholar] [CrossRef]
- AL-Musawe, L.; Martins, A.P.; Raposo, J.F.; Torre, C. The association between polypharmacy and adverse health consequences in elderly type 2 diabetes mellitus patients; a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2019, 155, 107804. [Google Scholar] [CrossRef] [PubMed]
- Noale, M.; Veronese, N.; Cavallo Perin, P.; Pilotto, A.; Tiengo, A.; Crepaldi, G.; Maggi, S. Polypharmacy in elderly patients with type 2 diabetes receiving oral antidiabetic treatment. Acta Diabetol. 2016, 53, 323–330. [Google Scholar] [CrossRef]
- Sehgal, V.; Sehgal, R.; Bajaj, A.; Bajwa, S.J.; Khaira, U.; Kresse, V. Polypharmacy and potentially inappropriate medication use as the precipitating factor in readmissions to the hospital. J. Fam. Med. Prim. Care 2013, 2, 194. [Google Scholar] [CrossRef] [PubMed]
- Leelakanok, N.; Holcombe, A.L.; Lund, B.C.; Gu, X.; Schweizer, M.L. Association between polypharmacy and death: A systematic review and meta-analysis. J. Am. Pharm. Assoc. 2017, 57, 729–738.e10. [Google Scholar] [CrossRef]
- Muth, C.; Blom, J.W.; Smith, S.M.; Johnell, K.; Gonzalez-Gonzalez, A.I.; Nguyen, T.S.; Brueckle, M.-S.; Cesari, M.; Tinetti, M.E.; Valderas, J.M. Evidence supporting the best clinical management of patients with multimorbidity and polypharmacy: A systematic guideline review and expert consensus. J. Intern. Med. 2019, 285, 272–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Høj, K.; Mygind, A.; Livbjerg, S.; Bro, F. Deprescribing of inappropriate medication in primary care. Ugeskr. Laeger 2019, 181, V01190027. [Google Scholar]
- Deprescribing.org—Optimizing Medication Use. Available online: https://deprescribing.org/ (accessed on 3 April 2020).
- Sinnott, C.; McHugh, S.; Browne, J.; Bradley, C. GPs’ perspectives on the management of patients with multimorbidity: Systematic review and synthesis of qualitative research. BMJ Open 2013, 3, e003610. [Google Scholar] [CrossRef] [Green Version]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Sharp, C.N.; Linder, M.W.; Valdes, R. Polypharmacy: A healthcare conundrum with a pharmacogenetic solution. Crit. Rev. Clin. Lab. Sci. 2020, 57, 161–180. [Google Scholar] [CrossRef]
- Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, 10, e1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaedigk, A.; Dinh, J.C.; Jeong, H.; Prasad, B.; Leeder, J.S. Ten Years’ Experience with the CYP2D6 Activity Score: A Perspective On Future Investigations to Improve Clinical Predictions for Precision Therapeutics. J. Pers. Med. 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Caudle, K.E.; Dunnenberger, H.M.; Freimuth, R.R.; Peterson, J.F.; Burlison, J.D.; Whirl-Carrillo, M.; Scott, S.A.; Rehm, H.L.; Williams, M.S.; Klein, T.E.; et al. Standardizing terms for clinical pharmacogenetic test results: Consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet. Med. 2017, 19, 215–223. [Google Scholar] [CrossRef]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; LLerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, L.B.; Johnson, S.G.; Caudle, K.E.; Haidar, C.E.; Voora, D.; Wilke, R.A.; Maxwell, W.D.; McLeod, H.L.; Krauss, R.M.; Roden, D.M.; et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1 and Simvastatin-Induced Myopathy: 2014 Update. Clin. Pharmacol. Ther. 2014, 96, 423–428. [Google Scholar] [CrossRef]
- Bank, P.C.D.; Swen, J.J.; Guchelaar, H.J. Estimated nationwide impact of implementing a preemptive pharmacogenetic panel approach to guide drug prescribing in primary care in The Netherlands. BMC Med. 2019, 17, 110. [Google Scholar] [CrossRef] [Green Version]
- Alshabeeb, M.A.; Deneer, V.H.M.; Khan, A.; Asselbergs, F.W. Use of Pharmacogenetic Drugs by the Dutch Population. Front. Genet. 2019, 10, 567. [Google Scholar] [CrossRef] [PubMed]
- Westergaard, N.; Nielsen, R.S.; Jørgensen, S.; Vermehren, C. Drug use in Denmark for drugs having pharmacogenomics (PGx) based dosing guidelines from CPIC or DPWG for CYP2D6 and CYP2C19 drug–gene pairs: Perspectives for introducing PGx test to polypharmacy patients. J. Pers. Med. 2020, 10, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermehren, C.; Søgaard Nielsen, R.; Jørgensen, S.; Drastrup, A.M.; Westergaard, N. Drug Use among Nursing Home Residents in Denmark for Drugs Having Pharmacogenomics Based (PGx) Dosing Guidelines: Potential for Preemptive PGx Testing. J. Pers. Med. 2020, 10, 78. [Google Scholar] [CrossRef]
- Lunenburg, C.A.T.C.; Hauser, A.S.; Ishtiak-Ahmed, K.; Gasse, C. Primary Care Prescription Drug Use and Related Actionable Drug-Gene Interactions in the Danish Population. Clin. Transl. Sci. 2020, 13, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Westergaard, N.; Tarnow, L.; Vermehren, C. Use of Clopidogrel and Proton Pump Inhibitors Alone or in Combinations in Persons with Diabetes in Denmark; Potential for CYP2C19 Genotype-Guided Drug Therapy. Metabolites 2021, 11, 96. [Google Scholar] [CrossRef]
- Medscape Drug Interactions Checker—Medscape Drug Reference Database. Available online: https://reference.medscape.com/drug-interactionchecker (accessed on 7 July 2021).
- Association, A.D. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetesd2021. Diabetes Care 2021, 44, S111–S124. [Google Scholar] [CrossRef]
- Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020, 63, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Schilling, U.; Dingemanse, J.; Ufer, M. Pharmacokinetics and Pharmacodynamics of Approved and Investigational P2Y12 Receptor Antagonists. Clin. Pharmacokinet. 2020, 59, 545–566. [Google Scholar] [CrossRef] [PubMed]
- Rivas Rios, J.R.; Franchi, F.; Rollini, F.; Angiolillo, D.J. Diabetes and antiplatelet therapy: From bench to bedside. Cardiovasc. Diagn. Ther. 2018, 8, 594–609. [Google Scholar] [CrossRef]
- Angermayr, L.; Melchart, D.; Linde, K. Multifactorial lifestyle interventions in the primary and secondary prevention of cardiovascular disease and type 2 diabetes mellitus—A systematic review of randomized controlled trials. Ann. Behav. Med. 2010, 40, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Schofield, J.; Ho, J.; Soran, H. Cardiovascular Risk in Type 1 Diabetes Mellitus. Diabetes Ther. 2019, 10, 773–789. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association Cardiovascular disease and risk management: Standards of medical care in diabetesd 2021. Diabetes Care 2021, 44, S125–S150. [CrossRef]
- Holt, R.I.G.; De Groot, M.; Golden, S.H. Diabetes and depression. Curr. Diab. Rep. 2014, 14, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, M.M.; Corcoran, P.; Perry, I.J. Anxiety and depression symptoms in patients with diabetes: Original Article: Psychology. Diabet. Med. 2009, 26, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.K. Diabetic neuropathic pain: Physiopathology and treatment. World J. Diabetes 2015, 6, 432. [Google Scholar] [CrossRef] [PubMed]
- Attal, N. Pharmacological treatments of neuropathic pain: The latest recommendations. Rev. Neurol. 2019, 175, 46–50. [Google Scholar] [CrossRef]
- Katon, W.J. The Comorbidity of Diabetes Mellitus and Depression. Am. J. Med. 2008, 121, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Samwald, M.; Xu, H.; Blagec, K.; Empey, P.E.; Malone, D.C.; Ahmed, S.M.; Ryan, P.; Hofer, S.; Boyce, R.D. Incidence of Exposure of Patients in the United States to Multiple Drugs for Which Pharmacogenomic Guidelines Are Available. PLoS ONE 2016, 11, e0164972. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.K.; Erion, K.; Florez, J.C.; Hattersley, A.T.; Hivert, M.F.; Lee, C.G.; McCarthy, M.I.; Nolan, J.J.; Norris, J.M.; Pearson, E.R.; et al. Precision medicine in diabetes: A Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020, 63, 1671–1693. [Google Scholar] [CrossRef]
- Zhu, Y.; Swanson, K.M.; Rojas, R.L.; Wang, Z.; St. Sauver, J.L.; Visscher, S.L.; Prokop, L.J.; Bielinski, S.J.; Wang, L.; Weinshilboum, R.; et al. Systematic review of the evidence on the cost-effectiveness of pharmacogenomics-guided treatment for cardiovascular diseases. Genet. Med. 2020, 22, 475–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brixner, D.; Biltaji, E.; Bress, A.; Unni, S.; Ye, X.; Mamiya, T.; Ashcraft, K.; Biskupiak, J. The effect of pharmacogenetic profiling with a clinical decision support tool on healthcare resource utilization and estimated costs in the elderly exposed to polypharmacy. J. Med. Econ. 2016, 19, 213–228. [Google Scholar] [CrossRef]
- Klein, M.E.; Parvez, M.M.; Shin, J.G. Clinical Implementation of Pharmacogenomics for Personalized Precision Medicine: Barriers and Solutions. J. Pharm. Sci. 2017, 106, 2368–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, M.; Bellastella, G.; Maiorino, M.I.; Meier, J.J.; Esposito, K.; Giugliano, D. Diabetes and aging: From treatment goals to pharmacologic therapy. Front. Endocrinol. 2019, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Hallas, J.; Laursen, M.; Friis, S. Data Resource Profile: Danish online drug use statistics (MEDSTAT). Int. J. Epidemiol. 2016, 45, 1401–1402g. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistics Denmark Statistics Denmark. Available online: https://www.dst.dk/en# (accessed on 7 July 2021).
- Schmidt, M.; Pedersen, L.; Sørensen, H.T. The Danish Civil Registration System as a tool in epidemiology. Eur. J. Epidemiol. 2014, 29, 541–549. [Google Scholar] [CrossRef]
- World Health Organization Collaborating Centre for Drug Statistics Methodology. WHOCC—ATC/DDD Index. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 7 July 2021).
Age Group | A10 | A10A | A10B | A10A/B |
---|---|---|---|---|
0–17 | 3107 (2.7) | 2987 (2.6) | 105 (0.1) | 15 (<0.1) |
18–24 | 3695 (6.9) | 2646 (5.0) | 952 (1.8) | 97 (0.2) |
25–44 | 23,685 (16.4) | 8311 (5.8) | 13,153 (9.1) | 2221 (1.5) |
45–64 | 94,880 (62.2) | 13,194 (8.7) | 65,928 (43.2) | 15,758 (10.3) |
65–79 | 103,926 (120.9) | 10,327 (12.0) | 74,102 (86.2) | 19,497 (22.7) |
80+ | 29,201 (113.8) | 4447 (17.3) | 20,262 (78.9) | 4492 (17.5) |
All | 258,494 (44.7) | 41,912 (7.3) | 174,502 (30.2) | 42,080 (7.3) |
Denmark | A10 | A10A | A10B | A10A/B | |
---|---|---|---|---|---|
B01 (antithrombotic agents) | 556,095 (96.2) | 109,300 (422.8) | 13,832 * (330.0) | 71,648 ^ (410.6) | 23,820 (566.0) |
B01AC (platelet aggregation inhibitors) | 395,373 (68.4) | 84,862 (328.3) | 10,994 * (261.1) | 54,813 ^ (314.1) | 19,105 (454.0) |
B01AC04 Clopidogrel | 127,480 (22.05) | 21,746 (84.1) | 3363 (80.2) | 13,912 ^ (79.7) | 4471 (106.3) |
C (cardiovascular system) | 1,413,160 (244.4) | 221,472 (856.8) | 26,665 * (636.1) | 154,999 ^ (888.3) | 39,808 (946.0) |
C01 (cardiac therapy) | 109,730 (19.0) | 22,091 (85.5) | 2760 * (65.9) | 14,220 ^ (81.5) | 5111 (121.5) |
C02 (antihypertensives) | 17,305 (3.0) | 5151 (20.0) | 1031 * (24.6) | 2785 ^ (16.0) | 1385 (31.7) |
C03 (diuretics) | 424,584 (73.4) | 80,925 (313.1) | 11,316 * (270.0) | 52,129 ^ (298.7) | 17,480 (415.4) |
C07 (beta blocking agents) | 385.920 (66.8) | 71.406 (276.3) | 7981 * (190.4) | 48,563 ^ (278.3) | 14,862 (353.2) |
C07AB02 (Metoprolol) | 279,767 (48.4) | 52,559 (203.3) | 5783 * (138.0) | 35,906 ^ (205.8) | 10,870 (258.3) |
C08 (calcium channel blockers) | 427,655 (74.0) | 78,955 (305.4) | 9551 * (227.8) | 53,536 ^ (306.8) | 15,868 (377.1) |
C09 (agents acting on the renin-angiotensin system) | 747,141 (129.2) | 157,696 (610.1) | 17,751 * (423.5) | 108,958 ^ (624.4) | 30,987 (736.4) |
C10 (lipid modifying agents) | 663,711 (114.8) | 174,753 (676.0) | 18,752 * (447.4) | 122,359 ^ (701.2) | 33,642 (799.5) |
C10AA (statins) | 649,020 (112.3) | 171,188 (662.3) | 18,039 * (430.4) | 120,341 ^ (689.7) | 32,808 (779.7) |
C10AA01 (Simvastatin) | 309,936 (53.6) | 86,531 (334.8) | 9106 * (217.3) | 60,696 ^ (347.8) | 16,729 (397.6) |
C10AA05 (Atorvastatin) | 304,764 (52.7) | 76,599 (296.39) | 7791 * (185.9) | 54,606 ^ (312.9) | 14,202 (337.5) |
Denmark | A10 | A10A | A10B | A10A/B | |
---|---|---|---|---|---|
N02 (analgesics) | 1,236,170 (213.8) | 124,260 (480.7) | 16,453 * (392,6) | 83,676 ^ (479.5) | 24,131 (573.5) |
N02A (opiods) | 390,614 (67.6) | 47,006 (181.9) | 7666 * (182.9) | 29,130 ^ (166.9) | 10,210 (242.6) |
N02AA05 (Oxycodone) | 79,328 (13.7) | 9536 (36.9) | 1856 * (44.3) | 5469 ^ (31.3) | 2211 (52.5) |
N02AX02 (Tramadol) | 211,591 (36.6) | 26,302 (101.8) | 3809 * (90.9) | 16,697 ^ (95.7) | 5796 (137.7) |
R05DA05 (Codeine) | 84,210 (14.6) | 8987 (34.8) | 1156 * (27.6) | 6091 ^ (34.9) | 1740 (41.4) |
N02B (other analgesics and antipyretics) | 1,089,807 (188.5) | 113,995 (441.0) | 14,711 * (351.0) | 76,963 ^ (441.0) | 22,321 (530.4) |
N03AX12 (Gabapentin) | 78.048 (13.5) | 11.559 (44.9) | 1.958 * (46.7) | 6.640 ^ (38.1) | 3.001 (71.3) |
N05 (psycoleptics) | 407,387 (70.5) | 37,461 (144.9) | 5550 * (132.4) | 25,042 ^ (143.5) | 6869 (163.2) |
N05A (antipsychotics) | 131,836 (22.8) | 13,355 (51.7) | 1877 * (44.8) | 8903 ^ (51.0) | 2575 (61.2) |
N05B (anxiolytics) | 124,731 (21.6) | 11,906 (46.1) | 1802 * (42.9) | 8079 (46.3) | 2025 (48.2) |
N05C (hypnotics and sedatives) | 232,933 (40.3) | 21,058 (81.5) | 3407 * (81.3) | 13,618 ^ (78,0) | 4033 ^ (95.8) |
N06 (psychoanaleptics) | 471,341 (81.5) | 44,440 (171.9) | 6699 * (159.8) | 28,961 ^ (166.0) | 8780 (208.7) |
N06A (antidepressants) | 416,064 (72.0) | 41,942 (162.3) | 6188 * (147.6) | 27,388 ^ (157.0) | 8366 (198.8) |
N06AA09 (Amitriptyline) | 34,598 (6.0) | 4334 (16.8) | 693 * (16.5) | 2555 ^ (14.6) | 1086 (25.8) |
N06AX21 (Duloxetin) | 34,277 (5.9) | 3852 (14.9) | 533 * (12.7) | 2514 ^ (14.4) | 805 (19.1) |
Drug Name | PGx-G | ATC | Users (GP) | Prevalence (GP) | Users (A10) | Prevalence (A10) | Prevalence Ratio |
---|---|---|---|---|---|---|---|
Pantoprazol | AG | A02BC02 | 329,222 | 56.95 | 39,287 | 151.98 | 2.7 |
Lansoprazol | AG | A02BC03 | 135,980 | 23.52 | 17,246 | 66.72 | 2.8 |
Omeprazol | AG | A02BC01 | 119,274 | 20.63 | 14,286 | 55.27 | 2.7 |
Esomeprazol | N-AG | A02BC05 | 32,295 | 5.59 | 3054 | 11.81 | 2.1 |
Ondansetron | AG | A04AA01 | 13,979 | 2.42 | 1341 | 5.19 | 2.2 |
Clopidogrel | AG | B01AC04 | 127,480 | 22.05 | 21,746 | 84.13 | 3.8 |
Amiodaron | N-AG | C01BD01 | 8582 | 1.48 | 1420 | 5.49 | 3.7 |
Metoprolol | AG | C07AB02 | 279,767 | 48.39 | 52,559 | 203.33 | 4.2 |
Carvedilol | N-AG | C07AG02 | 33,506 | 5.80 | 8004 | 30.96 | 5.3 |
Bisoprolol | N-AG | C07AB07 | 24,953 | 4.32 | 4860 | 18.80 | 4.4 |
Atenolol | N-AG | C07AB03 | 15,517 | 2.68 | 2859 | 11.06 | 4.1 |
Simvastatin | AG | C10AA01 | 309,936 | 53.61 | 86,531 | 334.75 | 6.2 |
Atorvastatin | AG | C10AA05 | 304,764 | 52.72 | 76,599 | 296.33 | 5.6 |
Tramadol | AG | N02AX02 | 211,591 | 36.60 | 26,302 | 101.75 | 2.8 |
Codein | AG | R05DA04 | 84,210 | 14.57 | 8987 | 34.77 | 2.4 |
Oxycodon | N-AG | N02AA05 | 79,328 | 13.72 | 9536 | 36.89 | 2.7 |
Quetiapine | N-AG | N05AH04 | 65,208 | 11.28 | 5540 | 21.43 | 1.9 |
Olanzapine | N-AG | N05AH03 | 17,584 | 3.04 | 1819 | 7.04 | 2.3 |
Risperidon | N-AG | N05AX08 | 16,066 | 2.78 | 1881 | 7.28 | 2.6 |
Aripiprazol | AG | N05AX12 | 12,381 | 2.14 | 1347 | 5.21 | 2.4 |
Sertraline | AG | N06AB06 | 110,671 | 19.14 | 8521 | 32.96 | 1.7 |
Citalopram | AG | N06AB04 | 90,460 | 15.65 | 9824 | 38.00 | 2.4 |
Mirtazapin | N-AG | N06AX11 | 83,603 | 14.46 | 9035 | 34.95 | 2.4 |
Venlafaxin | AG | N06AX16 | 48,398 | 8.37 | 5307 | 20.53 | 2. 5 |
Methylphenidate | N-AG | N06BA04 | 38,620 | 6.68 | 984 | 3.81 | 0.6 |
Amitriptyline | AG | N06AA09 | 34,598 | 5.98 | 4334 | 16.77 | 2.8 |
Duloxetine | N-AG | N06AX21 | 34,277 | 5.93 | 3852 | 14.90 | 2.5 |
Escitalopram | AG | N06AB10 | 23,607 | 4.08 | 2153 | 8.33 | 2.0 |
Nortriptyline | AG | N06AA10 | 14,339 | 2.48 | 1718 | 6.65 | 2.7 |
Paroxetine | AG | N06AB05 | 12,410 | 2.15 | 1332 | 5.15 | 2.4 |
Fluoxetine | N-AG | N06AB03 | 10,535 | 1.82 | 831 | 3.21 | 1.8 |
Atomoxetine | AG | N06BA09 | 9778 | 1.69 | 212 | 0.82 | 0.5 |
Drug Name | Alone | Clopidogrel | Metoprolol | Pantoprazole | Quetiapine | Sertraline | Tramadol | Simvatsatin |
---|---|---|---|---|---|---|---|---|
Clopidogrel | 84.1/22.1 (3.8) | 25.7/4.7 (5.4) | 20.4/4.4 (4.6) | 2.1/0.5 (4.1) | 4.0/1.0 (4.0) | 12.1/2.6 (4.7) | 31.5/7.1 (4.4) | |
RR | 1.42 [1.39–1.45] | 1.21 [1.18–1.24] | 1.09 [0.99–1.19] | 1.06 [1.00–1.13] | 1.22 [1.18–1.26] | 1.17 [1.14–1.19] | ||
Metoprolol | 203.3/48.4 (4.2) | 25.7/4.7 (5.4) | 41.7/8.4 (4.9) | 3.6/0.8 (4.7) | 6.8/1.5 (4.4) | 26.7/5.2 (5.2) | 76.2/11.6 (6.6) | |
RR | 1.29 [1.26–1.32] | 1.18 [1.16–1.20] | 1.11 [1.04–1.20] | 1.05 [1.00–1.10] | 1.23 [1.20–1.26] | 1.56 [1.54–1.59] | ||
Pantoprazole | 152.0/56.9 (2.7) | 20.4/4.4 (4.6) | 41.7/8.4 (4.9) | 5.3/1.7 (3.2) | 7.4/2.5 (3.0) | 27.6/8.0 (3.4) | 49.8/7.6 (6.6) | |
RR | 1.73 [1.68–1.78] | 1.85 [1.82–1.89] | 1.18 [1.12–1.25] | 1.11 [1.06–1.17] | 1.29 [1.26–1.32] | 2.47 [2.43–2.51] | ||
Quetiapine | 21.4/11.3 (1.9) | 2.1/0.5 (4.1) | 3.6/0.8 (4.7) | 5.3/1.7 (3.2) | 3.2/1.9 (1.6) | 3.8/1.3 (3.0) | 7.2/1.0/(7.1) | |
RR | 2.18 [2.00–2.38] | 2.47 [2.31–2.63] | 1.66 [1.58–1.74] | 0.86 [0.80–0.91] | 1.57 [1.48–1.67] | 3.72 [3.56–3.88] | ||
Sertraline | 33.0/19.1 (1,7) | 4.0/1.0 (4.0) | 6.8/1.5 (4.4) | 7.4/2.5 (3.0) | 3.2/1.9 (1.6) | 5.1/1.7 (3.0) | 10.9/1.7 (6.3) | |
RR | 2.35 [2.21–2.51] | 2.56 [2.45–2.68] | 1.72 [1.66–1.80] | 0.94 [0.88–1.01] | 1.74 [1.65–1.84] | 3.65 [3.52–3.78] | ||
Tramadol | 101.8/36.6 (2,8) | 12.1/2.6 (4.7) | 26.7/5.2/(5.2) | 27.6/8.0 (3.4) | 3.8/1.3 (3.0) | 5.1/1.7 (3.0) | 35.5/5.0 (7.0) | |
RR | 1.67 [1.61–1.74] | 1.86 [1.82–1.91] | 1.24 [1.21–1.27] | 1.07 [1.00–1.14] | 1.08 [1.02–1.14] | 2.53 [2.49–2.58] | ||
Simvastatin | 334.8/53.6 (6.2) | 31.5/7.1 (4.4) | 76.2/11.6 (6.6) | 49.8/7.6 (6.6) | 7.2/1.0 (7.1) | 10.9/1.7 (6.3) | 35.5/5.0 (7.0) | |
RR | 0.71 [0.70–0.73] | 1.05 [1.04 1.07] | 1.06 [1.04–1.08] | 1.13 [1.07–1.19] | 1.01 [0.97–1.05] | 1.13 [1.10–1.15] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westergaard, N.; Tarnow, L.; Vermehren, C. Comparison of Multidrug Use in the General Population and among Persons with Diabetes in Denmark for Drugs Having Pharmacogenomics (PGx) Based Dosing Guidelines. Pharmaceuticals 2021, 14, 899. https://doi.org/10.3390/ph14090899
Westergaard N, Tarnow L, Vermehren C. Comparison of Multidrug Use in the General Population and among Persons with Diabetes in Denmark for Drugs Having Pharmacogenomics (PGx) Based Dosing Guidelines. Pharmaceuticals. 2021; 14(9):899. https://doi.org/10.3390/ph14090899
Chicago/Turabian StyleWestergaard, Niels, Lise Tarnow, and Charlotte Vermehren. 2021. "Comparison of Multidrug Use in the General Population and among Persons with Diabetes in Denmark for Drugs Having Pharmacogenomics (PGx) Based Dosing Guidelines" Pharmaceuticals 14, no. 9: 899. https://doi.org/10.3390/ph14090899
APA StyleWestergaard, N., Tarnow, L., & Vermehren, C. (2021). Comparison of Multidrug Use in the General Population and among Persons with Diabetes in Denmark for Drugs Having Pharmacogenomics (PGx) Based Dosing Guidelines. Pharmaceuticals, 14(9), 899. https://doi.org/10.3390/ph14090899