Pharmacokinetic Properties of the Novel Synthetic Cannabinoid 5F-APINAC and Its Influence on Metabolites Associated with Neurotransmission in Rabbit Plasma
Abstract
:1. Introduction
2. Results
2.1. Rabbit Plasma Pharmacokinetic Properties of 5F-APINAC
2.2. Targeted Metabolomics Profile Associated with Neurotransmission
2.2.1. Serotonergic System-Serotonin Pathway
2.2.2. Aspartic Acid Innervation System
2.2.3. Kynurenine Pathway
2.2.4. Microbial Tryptophan Catabolism
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Chemicals and Reagents
4.3. Pharmacokinetic Assessment
4.3.1. Sample Preparation
4.3.2. Instrumental Analysis
4.4. Targeted Metabolomics Profile
4.4.1. Sample Preparation
4.4.2. Instrumental Analysis
4.4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savchuk, S.; Appolonova, S.; Pechnikov, A.; Rizvanova, L.; Shestakova, K.; Tagliaro, F. In Vivo metabolism of the new synthetic cannabinoid APINAC in rats by GC–MS and LC–QTOF-MS. Forensic Toxicol. 2017, 35, 359–368. [Google Scholar] [CrossRef]
- Zangani, C.; Schifano, F.; Napoletano, F.; Arillotta, D.; Gilgar, L.; Guirguis, A.; Vento, A. The e-psychonauts’ ‘Spiced’ World; assessment of the synthetic cannabinoids’ information available online. Curr. Neuropharmacol. 2020, 18, 966–1051. [Google Scholar] [CrossRef]
- Alves, V.L.; Gonçalves, J.L.; Aguiar, J.; Teixeira, H.M.; Câmara, J.S. The synthetic cannabinoids phenomenon: From structure to toxicological properties. A review. Crit. Rev. Toxicol. 2020, 50, 359–382. [Google Scholar] [CrossRef]
- Alipour, A.; Patel, P.B.; Shabbir, Z.; Gabrielson, S. Review of the many faces of synthetic cannabinoid toxicities. Ment. Health Clin. 2019, 9, 93–99. [Google Scholar] [CrossRef]
- Szabo, B.; Schlicker, E. Effects of Cannabinoids on Neurotransmission; Springer: Berlin/Heidelberg, Germany, 2005; pp. 327–365. [Google Scholar]
- Watkins, A.R. Cannabinoid interactions with ion channels and receptors. Channels 2019, 13, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appolonova, S.; Palacio, C.; Shestakova, K.; Mesonzhnik, N.; Brito, A.; Kuznetsov, R.M.; Markin, P.A.; Bochkareva, N.L.; Burmykin, D.; Ovcharov, M.; et al. In Vivo and invitro metabolism of the novel synthetic cannabinoid 5F-APINAC. Forensic Toxicol. 2019, 38, 160–171. [Google Scholar] [CrossRef]
- Markin, P.A.; Brito, A.; Moskaleva, N.E.; Tagliaro, F.; La Frano, M.R.; Savitskii, M.V.; Appolonova, S.A. Short- and long-term exposures of the synthetic cannabinoid 5F-APINAC induce metabolomic alterations associated with neurotransmitter systems and embryotoxicity confirmed by teratogenicity in zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 243, 109000. [Google Scholar] [CrossRef] [PubMed]
- Vikingsson, S.; Gréen, H.; Brinkhagen, L.; Mukhtar, S.; Josefsson, M. Identification of AB-FUBINACA metabolites in authentic urine samples suitable as urinary markers of drug intake using liquid chromatography quadrupole tandem time of flight mass spectrometry. Drug Test. Anal. 2016, 8, 950–956. [Google Scholar] [CrossRef]
- Thomsen, R.; Nielsen, L.M.; Holm, N.B.; Rasmussen, H.B.; Linnet, K.; INDICES Consortium. Synthetic cannabimimetic agents metabolized by carboxylesterases. Drug Test. Anal. 2015, 7, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Diao, X.; Wohlfarth, A.; Scheidweiler, K.B.; Huestis, M.A. Metabolic profiling of new synthetic cannabinoids AMB and 5F-AMB by human hepatocyte and liver microsome incubations and high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 1067–1078. [Google Scholar] [CrossRef]
- Moskaleva, N.E.; Baranov, P.A.; Mesonzhnik, N.V.; Appolonova, S.A. HPLC–MS/MS method for the simultaneous quantification of desmethylmebeverine acid, mebeverine acid and mebeverine alcohol in human plasma along with its application to a pharmacokinetics study. J. Pharm. Biomed. Anal. 2017, 138, 118–125. [Google Scholar] [CrossRef]
- Appolonova, S.A.; Dikunets, M.A.; Rodchenkov, G.M. Possible indirect detection of rHuEPO administration in human urine by high-performance liquid chromatography tandem mass spectrometry. Eur. J. Mass Spectrom. 2008, 14, 201–209. [Google Scholar] [CrossRef]
- Lovelace, M.D.; Varney, B.; Sundaram, G.; Lennon, M.J.; Lim, C.K.; Jacobs, K.; Guillemin, G.J.; Brew, B.J. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 2017, 112 Pt B, 373–388. [Google Scholar] [CrossRef]
- Wang, T.; Sun, X.; Qin, W.; Zhang, X.; Wu, L.; Li, Y.; Zhou, C.; Zhou, H.; He, S.; Cong, H. From inflammatory reactions to neurotransmitter changes: Implications for understanding the neurobehavioral changes in mice chronically infected with Toxoplasma gondii. Behav. Brain Res. 2019, 359, 737–748. [Google Scholar] [CrossRef]
- Vondroušová, J.; Mikoška, M.; Syslová, K.; Böhmová, A.; Tejkalová, H.; Vacek, L.; Kodym, P.; Krsek, D.; Horáček, J. Monitoring of kynurenine pathway metabolites, neurotransmitters and their metabolites in blood plasma and brain tissue of individuals with latent toxoplasmosis. J. Pharm. Biomed. Anal. 2019, 170, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Jenny, M.; Santer, E.; Pirich, E.; Schennach, H.; Fuchs, D. Delta9-tetrahydrocannabinol and cannabidiol modulate mitogen-induced tryptophan degradation and neopterin formation in peripheral blood mononuclear cells in vitro. J. Neuroimmunol. 2009, 207, 75–82. [Google Scholar] [CrossRef]
- Eskelund, A.; Li, Y.; Budac, D.P.; Müller, H.K.; Gulinello, M.; Sanchez, C.; Wegener, G. Drugs with antidepressant properties affect tryptophan metabolites differently in rodent models with depression-like behavior. J. Neurochem. 2017, 142, 118–131. [Google Scholar] [CrossRef]
- Jenny, M.; Schröcksnadel, S.; Überall, F.; Fuchs, D. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism. Pharmaceuticals 2010, 3, 2647–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.J.; Li, X.F.; Hu, J.Q.; Ni, X.J.; Lu, H.Y.; Wang, J.J.; Huang, X.N.; Lin, C.X.; Shang, D.W.; Wen, Y.G. A Simple HPLC-MS/MS Method for Determination of Tryptophan, Kynurenine and Kynurenic Acid in Human Serum and its Potential for Monitoring Antidepressant Therapy. J. Anal. Toxicol. 2017, 41, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Speciale, C.; Hares, K.; Schwarcz, R.; Brookes, N. High-affinity uptake of L-kynurenine by a Na+-independent transporter of neutral amino acids in astrocytes. J. Neurosci. Off. J. Soc. Neurosci. 1989, 9, 2066–2072. [Google Scholar] [CrossRef] [Green Version]
- Fukui, S.; Schwarcz, R.; Rapoport, S.I.; Takada, Y.; Smith, Q.R. Blood-brain barrier transport of kynurenines: Implications for brain synthesis and metabolism. J. Neurochem. 1991, 56, 2007–2017. [Google Scholar] [CrossRef]
- Stone, T.W.; Connick, J.H. Quinolinic acid and other kynurenines in the central nervous system. Neuroscience 1985, 15, 597–617. [Google Scholar] [CrossRef]
- Dong-Ruyl, L.; Sawada, M.; Nakano, K. Tryptophan and its metabolite, kynurenine, stimulate expression of nerve growth factor in cultured mouse astroglial cells. Neurosci. Lett. 1998, 244, 17–20. [Google Scholar] [CrossRef]
- Moroni, F. Tryptophan metabolism and brain function: Focus on kynurenine and other indole metabolites. Eur. J. Pharmacol. 1999, 375, 87–100. [Google Scholar] [CrossRef]
- Stone, T.W. Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol. Sci. 2000, 21, 149–154. [Google Scholar] [CrossRef]
- Hilmas, C.; Pereira, E.F.; Alkondon, M.; Rassoulpour, A.; Schwarcz, R.; Albuquerque, E.X. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: Physiopathological implications. J. Neurosci. Off. J. Soc. Neurosci. 2001, 21, 7463–7473. [Google Scholar] [CrossRef]
- Young, H.S.; Herbette, L.G.; Skita, V. Alpha-bungarotoxin binding to acetylcholine receptor membranes studied by low angle X-ray diffraction. Biophys. J. 2003, 85, 943–953. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Chávez, L.A.; Lugo Huitrón, R.; González Esquivel, D.; Pineda, B.; Ríos, C.; Silva-Adaya, D.; Sánchez- Chapul, L.; Roldán-Roldán, G.; Pérez de la Cruz, V. Relevance of Alternative Routes of Kynurenic Acid Production in the Brain. Oxidative Med. Cell. Longev. 2018, 5272741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connick, J.H.; Stone, T.W. Quinolinic acid effects on amino acid release from the rat cerebral cortex In Vitro and In Vivo. Br. J. Pharmacol. 1988, 93, 868–876. [Google Scholar] [CrossRef] [Green Version]
- Stone, T.W.; Perkins, M.N. Quinolinic acid: A potent endogenous excitant at amino acid receptors in CNS. Eur. J. Pharmacol. 1981, 72, 411–412. [Google Scholar] [CrossRef]
- Muller, F.L.; Song, W.; Jang, Y.C.; Liu, Y.; Sabia, M.; Richardson, A.; Van Remmen, H. Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am. J. Physiology. Regul. Integr. Comp. Physiol. 2007, 293, R1159–R1168. [Google Scholar] [CrossRef] [Green Version]
- Pierozan, P.; Zamoner, A.; Soska, A.K.; Silvestrin, R.B.; Loureiro, S.O.; Heimfarth, L.; e Souza, T.M.; Wajner, M.; Pessoa-Pureur, R. Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp. Neurol. 2010, 224, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, G.; Brew, B.J.; Jones, S.P.; Adams, S.; Lim, C.K.; Guillemin, G.J. Quinolinic acid toxicity on oligodendroglial cells: Relevance for multiple sclerosis and therapeutic strategies. J. Neuroinflammation 2014, 11, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, S.J.; Armati, P.J.; Guillemin, G.J.; Brew, B.J. Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS 1998, 12, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Brew, B.J.; Guillemin, G.J. Characterization of the kynurenine pathway in NSC-34 cell line: Implications for amyotrophic lateral sclerosis. J. Neurochem. 2011, 118, 816–825. [Google Scholar] [CrossRef]
- Drejer, J.; Larsson, O.M.; Schousboe, A. Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 1982, 47, 259–269. [Google Scholar] [CrossRef]
- Sanni, L.A.; Thomas, S.R.; Tattam, B.N.; Moore, D.E.; Chaudhri, G.; Stocker, R.; Hunt, N.H. Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and noncerebral malaria. Am. J. Pathol. 1998, 152, 611–619. [Google Scholar] [PubMed]
- Stone, D.M.; Merchant, K.M.; Hanson, G.R.; Gibb, J.W. Immediate and long-term effects of 3,4-methylenedioxymethamphetamine on serotonin pathways in brain of rat. Neuropharmacology 1987, 26, 1677–1683. [Google Scholar] [CrossRef]
- Schwarcz, R.; Foster, A.C.; French, E.D.; Whetsell, W.O., Jr.; Köhler, C. Excitotoxic models for neurodegenerative disorders. Life Sci. 1984, 35, 19–32. [Google Scholar] [CrossRef]
- Masters, R.D.; McGuire, M.T. (Eds.) The Neurotransmitter Revolution: Serotonin, Social Behavior, and the Law; SIU Press, Southern Illinois University: Carbondale, IL, USA, 1994. [Google Scholar]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.B.; Tanaka, A.; Kuhara, T.; Xiao, J.Z. Potential Effects of Indole-3-Lactic Acid, a Metabolite of Human Bifidobacteria, on NGF-induced Neurite Outgrowth in PC12 Cells. Microorganisms 2020, 8, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karbownik, M.; Reiter, R.J.; Garcia, J.J.; Cabrera, J.; Burkhardt, S.; Osuna, C.; Lewiński, A. Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: Relevance to cancer reduction. J. Cell Biochem. 2001, 81, 507–513. [Google Scholar] [CrossRef]
- Chyan, Y.J.; Poeggeler, B.; Omar, R.A.; Chain, D.G.; Frangione, B.; Ghiso, J.; Pappolla, M.A. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J. Biol. Chem. 1999, 274, 21937–21942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dosage (mg/kg) | t1/2 (min) 1 | AUC 0–24 (ng/mL × h) 1 | MRT 0–24 (min) 1 | Clearance (mL/(kg × h) 1 |
---|---|---|---|---|
0.1 | 74.8 ± 27.5 | 1737.5 ± 421.9 | 106.6 ± 39.8 | 14.2 ± 8 |
1 | 47.9 ± 2.1 | 2957.04 ± 270.4 | 53.5 ± 1.8 | 153 ± 2 |
2 | 26.0 ± 5.9 | 4132.5 ± 445.2 | 24.03 ± 6.9 | 324 ± 5 |
Neurotransmitter System | Metabolite | Role | Trend | ||
---|---|---|---|---|---|
Low Dose 1 | Medium Dose 1 | High Dose 1 | |||
Gamma-aminobutyric acid/glutamic acid innervation | Gamma-aminobutyric acid | Neurotransmitter | No trend | ||
Glutamic acid | Neurotransmitter, precursor | No trend | |||
Glutamine | Precursor | No trend | |||
Serotonergic system/serotonin pathway | Tryptophan | Precursor | ↓ | ↓ | -- |
Serotonin | Neurotransmitter | No trend | |||
5-Hydroxytryptophan | Precursor | No trend | |||
5-Hydroxyl indole acetic acid (5-HIAA) | Metabolite | ↓ | -- | ↓ | |
Tryptamine | Metabolite | No trend | |||
Dopaminergic/ adrenergic system | Phenylalanine | Precursor | No trend | ||
Tyrosine | Precursor | No trend | |||
L-DOPA | Precursor | No trend | |||
Norepinephrine | Neurotransmitter | No trend | |||
Epinephrine | Neurotransmitter | No trend | |||
Metanephrine | Metabolite | No trend | |||
Aspartic acid innervation system | Aspartic acid | Neurotransmitter | ↑ | ↑ | ↑ |
Asparagine | Precursor | No trend | |||
Cholinergic system | Acetylcholine | Neurotransmitter | No trend | ||
Choline | Precursor | No trend | |||
Kynurenine pathway | Kynurenine | Tryptophan conversion | ↑ | -- | -- |
Kynurenic acid | Tryptophan conversion | -- | ↑ | ↑ | |
Xanthurenic acid | Tryptophan conversion | ↑ | ↑ | ↑ | |
Quinolinic acid | Tryptophan conversion | ↑ | ↑ | ↑ | |
Anthranilic acid | Tryptophan conversion | ↓ | ↓ | ↓ | |
Picolinic acid | Tryptophan conversion | No trend | |||
Microbial tryptophan catabolism | Indole-3-propionic acid | Tryptophan conversion | -- | -- | ↑ |
Indole-3-carboxaldehyde | Tryptophan conversion | ↑ | ↑ | ↑ | |
Indole-3-acetic acid | Tryptophan conversion | No trend | |||
Indole-3-butyric acid | Tryptophan conversion | No trend | |||
Indole-3-lactic acid | Tryptophan conversion | ↓ | ↓ | ↓ | |
Indole-3-acrylic acid | Tryptophan conversion | No trend |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shestakova, K.M.; Mesonzhnik, N.V.; Markin, P.A.; Moskaleva, N.E.; Nedorubov, A.A.; Brito, A.; Appolonova, E.G.; Kuznetsov, R.M.; Bochkareva, N.L.; Kukharenko, A.; et al. Pharmacokinetic Properties of the Novel Synthetic Cannabinoid 5F-APINAC and Its Influence on Metabolites Associated with Neurotransmission in Rabbit Plasma. Pharmaceuticals 2021, 14, 668. https://doi.org/10.3390/ph14070668
Shestakova KM, Mesonzhnik NV, Markin PA, Moskaleva NE, Nedorubov AA, Brito A, Appolonova EG, Kuznetsov RM, Bochkareva NL, Kukharenko A, et al. Pharmacokinetic Properties of the Novel Synthetic Cannabinoid 5F-APINAC and Its Influence on Metabolites Associated with Neurotransmission in Rabbit Plasma. Pharmaceuticals. 2021; 14(7):668. https://doi.org/10.3390/ph14070668
Chicago/Turabian StyleShestakova, Ksenia M., Natalia V. Mesonzhnik, Pavel A. Markin, Natalia E. Moskaleva, Andrey A. Nedorubov, Alex Brito, Elizaveta G. Appolonova, Roman M. Kuznetsov, Natalia L. Bochkareva, Alexey Kukharenko, and et al. 2021. "Pharmacokinetic Properties of the Novel Synthetic Cannabinoid 5F-APINAC and Its Influence on Metabolites Associated with Neurotransmission in Rabbit Plasma" Pharmaceuticals 14, no. 7: 668. https://doi.org/10.3390/ph14070668
APA StyleShestakova, K. M., Mesonzhnik, N. V., Markin, P. A., Moskaleva, N. E., Nedorubov, A. A., Brito, A., Appolonova, E. G., Kuznetsov, R. M., Bochkareva, N. L., Kukharenko, A., Lyundup, A. V., Tagliaro, F., & Appolonova, S. A. (2021). Pharmacokinetic Properties of the Novel Synthetic Cannabinoid 5F-APINAC and Its Influence on Metabolites Associated with Neurotransmission in Rabbit Plasma. Pharmaceuticals, 14(7), 668. https://doi.org/10.3390/ph14070668