Antiviral Activity of Isoquinolone Derivatives against Influenza Viruses and Their Cytotoxicity
Abstract
:1. Introduction
2. Results
2.1. Identification of Compound 1 with Anti-Influenza Viral Activity
2.2. Compound 1 Inhibits Viral Polymerase Activity
2.3. Synthesis of Isoquinolone Derivatives
2.4. Structure-Activity Relationship: Isoquinolone Derivatives
2.5. Structure-Activity Relationship: Dimethoxy Isoquinolone Derivatives
2.6. Anti-Influenza Viral Activity of Compound 21 in Human Cells by Suppressing Viral Polymerase Activity
3. Discussion
4. Materials and Methods
4.1. Chemical Synthesis
4.2. Cells, Viruses, and Antiviral Compounds
4.3. Cytopathic Effect Assay
4.4. Immunoassay
4.5. Plaque Titration
4.6. Viral Polymerase Assay
4.7. NA Activity Assay
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine 2008, 26 (Suppl. 4), D49–D53. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Walker, A.P.; Carrique, L.; Keown, J.R.; Serna Martin, I.; Karia, D.; Sharps, J.; Hengrung, N.; Pardon, E.; Steyaert, J.; et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature 2019, 573, 287–290. [Google Scholar] [CrossRef] [PubMed]
- US Flu VE Data for 2019–2020. Available online: https://www.cdc.gov/flu/vaccines-work/2019-2020.html#Influenza-Positive (accessed on 29 April 2021).
- Duwe, S. Influenza viruses—Antiviral therapy and resistance. GMS Infect. Dis. 2017, 5. [Google Scholar] [CrossRef]
- Dharan, N.J.; Gubareva, L.V.; Meyer, J.J.; Okomo-Adhiambo, M.; McClinton, R.C.; Marshall, S.A.; St George, K.; Epperson, S.; Brammer, L.; Klimov, A.I.; et al. Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. JAMA 2009, 301, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Noshi, T.; Kitano, M.; Taniguchi, K.; Yamamoto, A.; Omoto, S.; Baba, K.; Hashimoto, T.; Ishida, K.; Kushima, Y.; Hattori, K.; et al. In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antivir. Res. 2018, 160, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Hayden, F.G.; Sugaya, N.; Hirotsu, N.; Lee, N.; de Jong, M.D.; Hurt, A.C.; Ishida, T.; Sekino, H.; Yamada, K.; Portsmouth, S.; et al. Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents. N. Engl. J. Med. 2018, 379, 913–923. [Google Scholar] [CrossRef]
- Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 449–463. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.C.; Pascua, P.N.Q.; Fabrizio, T.P.; Marathe, B.M.; Seiler, P.; Barman, S.; Webby, R.J.; Webster, R.G.; Govorkova, E.A. Influenza A and B viruses with reduced baloxavir susceptibility display attenuated in vitro fitness but retain ferret transmissibility. Proc. Natl. Acad. Sci. USA 2020, 117, 8593–8601. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.Y.; Lee, H.W.; Shin, J.S.; Kim, P.; Jung, Y.S.; Jeong, H.S.; Hyun, J.K.; Lee, C.K. Inhibition of influenza virus internalization by (-)-epigallocatechin-3-gallate. Antivir. Res. 2013, 100, 460–472. [Google Scholar] [CrossRef]
- Cho, W.J.; Yoo, S.J.; Park, M.J.; Chung, B.H.; Lee, C.O. Synthesis and antitumor activity of 3-arylisoquinoline derivatives. Arch. Pharm. Res. 1997, 20, 264–268. [Google Scholar] [CrossRef]
- Le, T.N.; Gang, S.G.; Cho, W.J. A versatile total synthesis of benzo[c]phenanthridine and protoberberine alkaloids using lithiated toluamide-benzonitrile cycloaddition. J. Org. Chem. 2004, 69, 2768–2772. [Google Scholar] [CrossRef]
- Van, H.T.; Le, Q.M.; Lee, K.Y.; Lee, E.S.; Kwon, Y.; Kim, T.S.; Le, T.N.; Lee, S.H.; Cho, W.J. Convenient synthesis of indeno [1,2-c]isoquinolines as constrained forms of 3-arylisoquinolines and docking study of a topoisomerase I inhibitor into DNA-topoisomerase I complex. Bioorg. Med. Chem. Lett. 2007, 17, 5763–5767. [Google Scholar] [CrossRef]
- Van, H.T.; Cho, W.J. Structural modification of 3-arylisoquinolines to isoindolo[2,1-b]isoquinolinones for the development of novel topoisomerase 1 inhibitors with molecular docking study. Bioorg. Med. Chem. Lett. 2009, 19, 2551–2554. [Google Scholar] [CrossRef]
- Jin, Y.; Khadka, D.B.; Yang, S.H.; Zhao, C.; Cho, W.-J. Synthesis of novel 5-oxaprotoberberines as bioisosteres of protoberberines. Tetrahedron Lett. 2014, 55, 1366–1369. [Google Scholar] [CrossRef]
- Khadka, D.B.; Woo, H.; Yang, S.H.; Zhao, C.; Jin, Y.; Le, T.N.; Kwon, Y.; Cho, W.J. Modification of 3-arylisoquinolines into 3,4-diarylisoquinolines and assessment of their cytotoxicity and topoisomerase inhibition. Eur. J. Med. Chem. 2015, 92, 583–607. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.J.; Kim, E.K.; Park, M.J.; Choi, S.U.; Lee, C.O.; Cheon, S.H.; Choi, B.G.; Chung, B.H. Synthesis and comparative molecular field analysis (CoMFA) of antitumor 3-arylisoquinoline derivatives. Bioorg. Med. Chem. 1998, 6, 2449–2458. [Google Scholar] [CrossRef]
- Yang, S.H.; Van, H.T.; Le, T.N.; Khadka, D.B.; Cho, S.H.; Lee, K.T.; Chung, H.J.; Lee, S.K.; Ahn, C.H.; Lee, Y.B.; et al. Synthesis, in vitro and in vivo evaluation of 3-arylisoquinolinamines as potent antitumor agents. Bioorg. Med. Chem. Lett. 2010, 20, 5277–5281. [Google Scholar] [CrossRef] [PubMed]
- Khadka, D.B.; Yang, S.H.; Cho, S.H.; Zhao, C.; Cho, W.-J. Synthesis of 12-oxobenzo[c]phenanthridinones and 4-substituted 3-arylisoquinolones via Vilsmeier–Haack reaction. Tetrahedron 2012, 68, 250–261. [Google Scholar] [CrossRef]
- Goldhill, D.H.; Te Velthuis, A.J.W.; Fletcher, R.A.; Langat, P.; Zambon, M.; Lackenby, A.; Barclay, W.S. The mechanism of resistance to favipiravir in influenza. Proc. Natl. Acad. Sci. USA 2018, 115, 11613–11618. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.P.; Ledeboer, M.W.; Davies, I.; Byrn, R.A.; Jones, S.M.; Perola, E.; Tsai, A.; Jacobs, M.; Nti-Addae, K.; Bandarage, U.K.; et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J. Med. Chem. 2014, 57, 6668–6678. [Google Scholar] [CrossRef]
- Hayden, F.G.; Shindo, N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis. 2019, 32, 176–186. [Google Scholar] [CrossRef]
- Kim, M.; Yim, J.H.; Kim, S.Y.; Kim, H.S.; Lee, W.G.; Kim, S.J.; Kang, P.S.; Lee, C.K. In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antivir. Res. 2012, 93, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Shin, J.S.; Yoon, Y.S.; Go, Y.Y.; Lee, H.W.; Kwon, O.S.; Park, S.; Park, M.S.; Kim, M. Salinomycin Inhibits Influenza Virus Infection by Disrupting Endosomal Acidification and Viral Matrix Protein 2 Function. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, Y.J.; Achary, R.; Lee, H.W.; Lee, H.J.; Lee, C.K.; Han, S.B.; Jung, Y.S.; Kang, N.S.; Kim, P.; Kim, M. Synthesis and anti-influenza virus activity of 4-oxo- or thioxo-4,5-dihydrofuro[3,4-c]pyridin-3(1H)-ones. Antivir. Res. 2014, 107, 66–75. [Google Scholar] [CrossRef]
- Murtaugh, W.; Mahaman, L.; Healey, B.; Peters, H.; Anderson, B.; Tran, M.; Ziese, M.; Carlos, M.P. Evaluation of three influenza neuraminidase inhibition assays for use in a public health laboratory setting during the 2011–2012 influenza season. Public Health Rep. 2013, 128 (Suppl. 2), 75–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Substitution | CC50 (µM) a against MDCK Cells | EC50 (µM) b against Influenza Virus (S.I. c) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R5 | R6 | R7 | PR8 d | HK e | Lee f | ||
1 | Me | 2′-Et, 4′+5′-OCH2O | H | H | H | OMe | OMe | 39.0 | 0.2 (195.0) | 0.3 (130.0) | 0.6 (65.0) |
2 | H | H | H | H | H | H | H | >300.0 | 45.0 (>6.7) | 73.4 (>4.1) | 88.1 (>3.4) |
3 | H | 2′-OH | H | H | H | H | H | >300.0 | 57.0 (>5.3) | 103.4 (>2.9) | 65.0 (>7.7) |
4 | H | 2′-CH2OH | H | H | H | H | H | >300.0 | 52.4 (>5.7) | 81.3 (>3.7) | 17.2 (>17.4) |
5 | H | 2′-OMe | H | H | H | H | H | 120.4 | >120.4 (n.d. g) | >120.4 (n.d.) | 1.4 (86.0) |
6 | H | 3′-Me | H | NMe2 | H | H | H | >300.0 | >300.0 (n.d.) | >300.0 (n.d.) | 58.7 (>5.1) |
7 | H | 4′-Me | H | NMe2 | H | H | H | >300.0 | >300.0 (n.d.) | >300.0(n.d.) | >300.0 (n.d.) |
8 | H | 4′-Cl | H | NMe2 | H | H | H | >300.0 | >300.0 (n.d.) | >300.0 (n.d.) | >300.0 (n.d.) |
9 | H | 4′-Br | H | NMe2 | H | H | H | >300.0 | >300.0 (n.d.) | >300.0 (n.d.) | >300.0 (n.d.) |
10 | H | 4′-OMe | H | NMe2 | H | H | H | >300.0 | >300.0 (n.d.) | >300.0 (n.d.) | >300.0 (n.d.) |
11 | H | 3′,4′-(OMe)2 | H | H | Me | H | H | >300.0 | 32.3 (>9.3) | 94.5 (>3.2) | 74.8 (>4.0) |
12 | H | 2′,6′-Me2 | H | H | Me | H | H | >300.0 | >300.0 (n.d.) | >300.0 (n.d.) | >300.0 (n.d.) |
13 | H | 3′,4′-(OMe)2 | Br | H | Me | H | H | >300.0 | 177.0 (>1.7) | 172.5 (>1.7) | >300.0 (n.d.) |
14 | H | 2′,6′-Me2 | Br | H | Me | H | H | >300.0 | >300.0 (n.d.) | >300.0 (n.d.) | >300.0 (n.d.) |
15 | Me | 2′-CHO | H | H | H | H | H | >300.0 | >300.0 (n.d.) | >300.0 (n.d.) | >300.0 (n.d.) |
16 | Me | 2′-OH | CHO | H | H | H | H | 148.5 | >148.5 (n.d.) | >148.5 (n.d.) | >148.5 (n.d.) |
17 | Me | 2′-Et, 4′+5′-OCH2O | H | H | H | OMe | OH | 109.0 | 36.8 (3.0) | 5.8 (18.8) | >109.0 (n.d.) |
AMT h | >300.0 | >300.0 (n.d.) | 1.6 (>187.5) | >300.0 (n.d.) | |||||||
RBV i | >300.0 | 25.0 (>16.2) | 43.8 (>19.7) | 48.4 (>30.6) | |||||||
OSV-C j | >300.0 | 0.05 (>6000) | 0.03 (>10,000) | 0.37 (>810.8) |
Compound | Substitution | CC50 (µM) a against MDCK Cells | EC50 (µM) b against Influenza Virus (S.I. c) | ||||||
---|---|---|---|---|---|---|---|---|---|
R1 | R2 | R5 | R6 | R7 | PR8 d | HK e | Lee f | ||
1 | Me | 2′-Et, 4′+5′-OCH2O | H | OMe | OMe | 39.0 | 0.2 (195.0) | 0.3 (130.0) | 0.6 (65.0) |
18 | Me | 2′-CHCH2, 4′+5′-OCH2O | H | OMe | OMe | 40.3 | 2.8 (14.4) | 1.4 (28.8) | 1.1 (36.6) |
19 | Me | 2′-C2H4OH, 4′+5′-OCH2O | H | OMe | OMe | >300.0 | 59.9 (>5.0) | 46.2 (>6.5) | 22.2 (>13.5) |
20 | H | 2′-C2H4OH, 4′+5′-OCH2O | H | OMe | OMe | >300.0 | 29.8 (>10.1) | 11.9 (>25.2) | 15.6 (>19.2) |
21 | H | H | OMe | OMe | H | >300.0 | 18.5 (>16.2) | 10.9 (>27.5) | 9.9 (>30.3) |
22 | H | 2′-OH | OMe | OMe | H | >300.0 | >300.0 (n.d. g) | >300.0 (n.d.) | >300.0 (n.d.) |
23 | H | 3′-Me | OMe | OMe | H | >300.0 | >300.0 (n.d.) | >300.0 (n.d.) | >300.0 (n.d.) |
AMT h | >300.0 | >300.0 (n.d.) | 1.6 (>187.5) | >300.0 (n.d.) | |||||
RBV i | >300.0 | 25.0 (>16.2) | 43.8 (>19.7) | 48.4 (>30.6) | |||||
OSV-C j | >300.0 | 0.05 (>6000) | 0.03 (>10,000) | 0.37 (>810.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.; Han, J.; Li, X.; Shin, H.; Cho, W.-J.; Kim, M. Antiviral Activity of Isoquinolone Derivatives against Influenza Viruses and Their Cytotoxicity. Pharmaceuticals 2021, 14, 650. https://doi.org/10.3390/ph14070650
Jang Y, Han J, Li X, Shin H, Cho W-J, Kim M. Antiviral Activity of Isoquinolone Derivatives against Influenza Viruses and Their Cytotoxicity. Pharmaceuticals. 2021; 14(7):650. https://doi.org/10.3390/ph14070650
Chicago/Turabian StyleJang, Yejin, Jinhe Han, Xiaoli Li, Hyunjin Shin, Won-Jea Cho, and Meehyein Kim. 2021. "Antiviral Activity of Isoquinolone Derivatives against Influenza Viruses and Their Cytotoxicity" Pharmaceuticals 14, no. 7: 650. https://doi.org/10.3390/ph14070650
APA StyleJang, Y., Han, J., Li, X., Shin, H., Cho, W. -J., & Kim, M. (2021). Antiviral Activity of Isoquinolone Derivatives against Influenza Viruses and Their Cytotoxicity. Pharmaceuticals, 14(7), 650. https://doi.org/10.3390/ph14070650