Hemorphins Targeting G Protein-Coupled Receptors
Abstract
:1. Introduction
2. Hemorphins and Opioid Receptors
3. Hemorphins and Angiotensin II Receptor
4. Hemorphins and the Bradykinin Receptor
5. Hemorphins and the Bombesin Receptor
6. Hemorphins and the Oxytocin Receptor
7. Hemorphins and the MAS-Related G Protein-Coupled Receptor X1
8. Multiple Modes of Action of Hemorphins on GPCRs
9. Conclusions
GPCR | Pharmacology | Model | Binding | Signaling | Physiological Implication | References |
---|---|---|---|---|---|---|
Opioid receptors (μ-, κ-, and δ-) | Agonist Antagonist? | in vitro, in vivo and in silico | Competitive radioligand binding assay in rat brain membranes Molecular docking and molecular dynamics | [35S]-GTPγS assay (Gi/o coupling?) | Analgesic effects | [6,7,8,9,22,23,26,37,38,39,40,41] |
Angiotensin II receptor (AT1R) | Positive allosteric modulator Partial agonist? | in vitro using HEK293 cells and in silico | Nano-BRET binding assay in HEK293 cells Molecular docking and molecular dynamics | BRET with Gαq protein and β-arrestin 2. Gαq/IP1 ERK1/2 | Implication in RAS and in the control of blood pressure? | [29,44] |
Bombesin receptor (hBRS-3) | Agonist | in vitro using CHO and NCI-N417 cells | Not studied | Gα16/PLC-mediated Ca2+ release ERK1/2 | Role in the neuroendocrine functions (energy metabolism, glucose homeostasis, and food intake)? | [53] |
Oxytocin Receptor | Agonist? | in vivo using rat and mouse | Not studied | Not studied | Antidepressant and anxiolytic effects | [57,58,59,60] |
Bradykinin Receptor | Positive allosteric modulator? | in vivo using anaesthetized rats | Not studied | Not studied | Hypotensive effects | [15] |
MAS-Related G Protein-Coupled Receptor X1 | Agonist | in vitro using HEK293 cells | Not studied | PLC-mediated Ca2+ release Crosstalk with the opioid receptors? | Role in pain perception? | [66] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomes, I.; Dale, C.S.; Casten, K.; Geigner, M.A.; Gozzo, F.C.; Ferro, E.S.; Heimann, A.S.; Devi, L.A. Hemoglobin-derived Peptides as Novel Type of Bioactive Signaling Molecules. AAPS J. 2010, 12, 658–669. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, F.; Carlsson, A.; Hallberg, M. Casomorphins/Hemorphins. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A.J., Ed.; Academic Press: Boston, MA, USA, 2013; Volume 211, pp. 1550–1555. [Google Scholar]
- Ali, A.; Baby, B.; Soman, S.S.; Vijayan, R. Molecular insights into the interaction of hemorphin and its targets. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Alzeyoudi, S.A.R.; Almutawa, S.A.; Alnajjar, A.N.; Vijayan, R. Molecular basis of the therapeutic properties of hemorphins. Pharmacol. Res. 2020, 158, 104855. [Google Scholar] [CrossRef]
- Lee, J.; Albiston, A.; Allen, A.; Mendelsohn, F.; Ping, S.; Barrett, G.; Murphy, M.; Morris, M.; McDowall, S.; Chai, S. Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience 2004, 124, 341–349. [Google Scholar] [CrossRef]
- Liebmann, C.; Schrader, U.; Brantl, V. Opioid receptor affinities of the blood-derived tetrapeptides hemorphin and cytochrophin. Eur. J. Pharmacol. 1989, 166, 523–526. [Google Scholar] [CrossRef]
- Davis, T.P.; Gillespie, T.J.; Porreca, F. Peptide fragments derived from the beta-chain of hemoglobin (hemorphins) are centrally active in vivo. Peptides 1989, 10, 747–751. [Google Scholar] [CrossRef]
- Cheng, B.C.; Tao, P.L.; Cheng, Y.Y.; Huang, E.Y.K. LVV-hemorphin 7 and angiotensin IV in correlation with antinociception and anti-thermal hyperalgesia in rats. Peptides 2012, 36, 9–16. [Google Scholar] [CrossRef]
- Hughes, J.; Smith, T.W.; Kosterlitz, H.W.; Fothergill, L.A.; Morgan, B.A.; Morris, H.R. Identification of two related pentapeptides from the brain with po-tent opiate agonist activity. Nature 1975, 258, 577–580. [Google Scholar] [CrossRef]
- Sanderson, K.; Nyberg, F.; Khalil, Z. Modulation of peripheral inflammation by locally administered hemorphin. Inflamm. Res. 1998, 47, 49–55. [Google Scholar] [CrossRef]
- Hung, H.Y.; Chow, L.H.; Kotlinska, J.H.; Drabik, A.; Silberring, J.; Chen, Y.H.; Huang, E.Y.K. LVV-hemorphin-7 (LVV-H7) plays a role in antinociception in a rat model of alcohol-induced pain disorders. Peptides 2021, 136, 455. [Google Scholar] [CrossRef]
- Dale, C.S.; Pagano, R.D.L.; Rioli, V.; Hyslop, S.; Giorgi, R.; Ferro, E.S. Antinociceptive action of hemopressin in experimental hyperalgesia. Peptides 2005, 26, 431–436. [Google Scholar] [CrossRef]
- Lantz, I.; Glämsta, E.L.; Talbäck, L.; Nyberg, F. Hemorphins derived from hemoglobin have an inhibitory action on angiotensin converting enzyme activity. FEBS Lett. 1991, 287, 39–41. [Google Scholar] [CrossRef] [Green Version]
- Cejka, J.; Zelezná, B.; Velek, J.; Zicha, J.; Kunes, J. LVV-hemorphin-7 lowers blood pressure in spontaneously hypertensive rats: Radiotelemetry study. Physiol. Res. 2004, 53, 603–607. [Google Scholar]
- Ianzer, D.; Konno, K.; Xavier, C.H.; Stöcklin, R.; Santos, R.A.S.; De Camargo, A.C.M.; Pimenta, D.C. Hemorphin and hemorphin-like peptides isolated from dog pancreas and sheep brain are able to potentiate bradykinin activity in vivo. Peptides 2006, 27, 2957–2966. [Google Scholar] [CrossRef] [PubMed]
- Maraninchi, M.; Feron, D.; Arnaudin, F.I.; Le Corroller, A.B.; Nogueira, J.P.; Mancini, J.; Valéro, R.; Piot, J.M.; Vialettes, B. Serum hemorphin-7 levels are decreased in obesity. Obesity (Silver Spring) 2013, 21, 378–381. [Google Scholar] [CrossRef]
- Glämsta, E.L.; Mørkrid, L.; Lantz, I.; Nyberg, F. Concomitant increase in blood plasma levels of immunoreactive hemorphin-7 and beta-endorphin following long distance running. Regul. Pept. 1993, 49, 9–18. [Google Scholar] [CrossRef]
- Dejouvencel, T.; Féron, D.; Rossignol, P.; Sapoval, M.; Kauffmann, C.; Piot, J.M.; Michel, J.B.; Arnaudin, F.I.; Meilhac, O. Hemorphin 7 Reflects Hemoglobin Proteolysis in Abdominal Aortic Aneurysm. Arter. Thromb. Vasc. Biol. 2010, 30, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Moisan, S.; Harvey, N.; Beaudry, G.; Forzani, P.; Burhop, K.E.; Drapeau, G.; Rioux, F. Structural Requirements and Mechanism of the Pressor Activity of Leu-Val-Val-hemorphin-7, a Fragment of Hemoglobin β-chain in Rats. Peptides 1998, 19, 119–131. [Google Scholar] [CrossRef]
- Blishchenko, E.Y.; Sazonova, O.V.; A Kalinina, O.; Yatskin, O.N.; Philippova, M.M.; Surovoy, A.Y.; Karelin, A.A.; Ivanov, V.T. Family of hemorphins: Co-relations between amino acid sequences and effects in cell cultures. Peptides 2002, 23, 903–910. [Google Scholar] [CrossRef]
- Brantl, V.; Gramsch, C.; Lottspeich, F.; Henschen, A.; Jaeger, K.H.; Herz, A. Novel opioid peptides derived from mitochondrial cytochrome b: Cytochrophins. Eur. J. Pharmacol. 1985, 111, 293–294. [Google Scholar] [CrossRef]
- Brantl, V.; Gramsch, C.; Lottspeich, F.; Mertz, R.; Jager, K.H.; Herz, A. Novel opioid peptides derived from hemoglobin: Hemorphins. Eur. J. Pharmacol. 1986, 125, 309–310. [Google Scholar] [CrossRef]
- Nyberg, F.; Sanderson, K.; Glämsta, E.L. The hemorphins: A new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers 1997, 43, 147–156. [Google Scholar] [CrossRef]
- Garreau, I.; Cucumel, K.; Dagouassat, N.; Zhao, Q.; Cupo, A.; Piot, J. Hemorphin Peptides are Released from Hemoglobin by Cathepsin D. Radioimmunoassay Against the C-part of V-V-hemorphin-7: An Alternative Assay for the Cathepsin D Activity. Peptides 1997, 18, 293–300. [Google Scholar] [CrossRef]
- Karelin, A.; Philippova, M.; Karelina, E.; Ivanov, V. Isolation of Endogenous Hemorphin-Related Hemoglobin Fragments from Bovine Brain. Biochem. Biophys. Res. Commun. 1994, 202, 410–415. [Google Scholar] [CrossRef]
- Garreau, I.; Zhao, Q.; Pejoan, C.; Cupo, A.; Piot, J.M. VV-hemorphin-7 and LVV-hemorphin-7 released during in vitro peptic hemoglobin hydrolysis are morphinomimetic peptides. Neuropeptides 1995, 28, 243–250. [Google Scholar] [CrossRef]
- Moeller, I.; Lew, R.A.; Mendelsohn, F.A.O.; Smith, A.I.; Brennan, M.E.; Tetaz, T.J.; Chai, S.Y. The Globin Fragment LVV-Hemorphin-7 Is an Endogenous Ligand for the AT4 Receptor in the Brain. J. Neurochem. 2002, 68, 2530–2537. [Google Scholar] [CrossRef]
- Corvol, P.; Michel, J.B.; Evin, G.; Gardes, J.; Alaoui, B.A.; Ménard, J. The role of the renin-angiotensin system in blood pressure regulation in normotensive animals and man. J. Hypertens. Suppl. 1984, 2, 25–30. [Google Scholar]
- Ali, A.; Palakkott, A.; Ashraf, A.; Al Zamel, I.; Baby, B.; Vijayan, R.; Ayoub, M.A. Positive Modulation of Angiotensin II Type 1 Receptor–Mediated Signaling by LVV–Hemorphin. Front. Pharmacol. 2019, 10, 1258. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Alzeyoudi, S.A.R.; Almutawa, S.A.; Alnajjar, A.N.; Al Dhaheri, Y.; Vijayan, R. Camel Hemorphins Exhibit a More Potent Angiotensin-I Converting Enzyme Inhibitory Activity than Other Mammalian Hemorphins: An in Silico and In Vitro Study. Biomolecules 2020, 10, 486. [Google Scholar] [CrossRef] [Green Version]
- Arnaudin, F.I.; Cohen, M.; Bordenave, S.; Sannier, F.; Piot, J.M. Comparative effects of angiotensin IV and two hemorphins on angiotensin-converting enzyme activity. Peptides 2002, 23, 1465–1470. [Google Scholar] [CrossRef]
- Zhao, Q.; Piot, J. Investigation of inhibition angiotensin-converting enzyme (ACE) activity and opioid activity of two hemorphins, LVV-hemorphin-5 and VV-hemorphin-5, isolated from a defined peptic hydrolysate of bovine hemoglobin. Neuropeptides 1997, 31, 147–153. [Google Scholar] [CrossRef]
- Cohen, M.; Arnaudin, F.I.; Piot, J.M. Hemorphins: Substrates and/or inhibitors of dipeptidyl peptidase IV. Hemorphins N-terminus sequence influence on the interaction between hemorphins and DPPIV. Biochimie 2004, 86, 31–37. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; Zhong, J.; Liu, C.; Zheng, B.; Gong, Q. DPP-4 Inhibitors as Potential Candidates for Antihypertensive Therapy: Im-proving Vascular Inflammation and Assisting the Action of Traditional Antihypertensive Drugs. Front. Immunol. 2019, 10, 1050. [Google Scholar] [CrossRef]
- Barkhudaryan, N.; Gambarov, S.; Gyulbayazyan, T.; Nahapetyan, K. LVV-Hemorphin-4 Modulates Ca2+/Calmodulin-Dependent Pathways in the Immune System by the Same Mechanism as in the Brain. J. Mol. Neurosci. 2002, 18, 203–210. [Google Scholar] [CrossRef]
- Elmaci, I.; Ince, B.; Özpinar, A.; Sav, A.M.; Altinoz, M.A. Hemoglobins, Hemorphins, and 11p15.5 Chromosomal Region in Cancer Biology and İmmunity with Special Emphasis for Brain Tumors. J. Neurol. Surg. Part A Cent. Eur. Neurosurg. 2016, 77, 247–257. [Google Scholar] [CrossRef]
- Glämsta, E.L.; Meyerson, B.; Silberring, J.; Terenius, L.; Nyberg, F. Isolation of a hemoglobin-derived opioid peptide from cerebro-spinal fluid of patients with cerebrovascular bleedings. Biochem. Biophys. Res. Commun. 1992, 184, 1060–1066. [Google Scholar] [CrossRef]
- Yukhananov, R.Y.; Glämsta, E.L.; Nyberg, F. Interaction of hemorphins with opioid receptors in the rat vas def-erens and guinea-pig ileum. Regul. Pept. 1994, 53, S239–S242. [Google Scholar] [CrossRef]
- Szikra, J.; Benyhe, S.; Orosz, G.; Darula, Z.; Piot, J.M.; Fruitier, I.; Monory, K.; Hanoune, J.; Borsodi, A. Radioligand Binding Properties of VV-Hemorphin 7, an Atypical Opioid Peptide. Biochem. Biophys. Res. Commun. 2001, 281, 670–677. [Google Scholar] [CrossRef]
- Zhao, Q.; Garreau, I.; Sannier, F.; Piot, J.M. Opioid peptides derived from hemoglobin: Hemorphins. Biopolymers 1997, 43, 75–98. [Google Scholar] [CrossRef]
- Zadina, J.E.; Kastin, A.J.; Ge, L.J.; Brantl, V. Hemorphins, cytochrophins, and human beta-casomorphins bind to anti-opiate (Tyr-MIF-1) as well as opiate binding sites in rat brain. Life Sci. 1990, 47, PL25–PL30. [Google Scholar] [CrossRef]
- Hothersall, J.D.; Torella, R.; Humphreys, S.; Hooley, M.; Brown, A.; McMurray, G.; Nickolls, S.A. Residues W320 and Y328 within the binding site of the μ-opioid receptor influence opiate ligand bias. Neuropharmacology 2017, 118, 46–58. [Google Scholar] [CrossRef]
- Wootten, D.; Christopoulos, A.; Solano, M.M.; Babu, M.M.; Sexton, P.M. Mechanisms of signalling and biased agonism in G pro-tein-coupled receptors. Nat. Rev. Mol. Cell Biol. 2018, 19, 638–653. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Johnstone, E.K.M.; Baby, B.; See, H.B.; Song, A.; Rosengren, K.J.; Pfleger, K.D.G.; Ayoub, M.A.; Vijayan, R. Insights into the Interaction of LVV-Hemorphin-7 with Angiotensin II Type 1 Receptor. Int. J. Mol. Sci. 2020, 22, 209. [Google Scholar] [CrossRef] [PubMed]
- Wingler, L.M.; McMahon, C.; Staus, D.P.; Lefkowitz, R.J.; Kruse, A.C. Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody. Cell 2019, 176, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zweemer, A.J.; Bunnik, J.; Veenhuizen, M.; Miraglia, F.; Lenselink, E.B.; Vilums, M.; De Vries, H.; Gibert, A.; Thiele, S.; Rosenkilde, M.M.; et al. Discovery and Mapping of an Intracellular Antagonist Binding Site at the Chemokine Receptor CCR. Mol. Pharmacol. 2014, 86, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Dowal, L.; Sim, D.S.; Dilks, J.R.; Blair, P.; Beaudry, S.; Denker, B.M.; Koukos, G.; Kuliopulos, A.; Flaumenhaft, R. Identification of an antithrombotic allosteric modulator that acts through helix 8 of PAR. Proc. Natl. Acad. Sci. USA 2011, 108, 2951–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Heinz, B.A.; Qian, Y.W.; Carter, J.H.; Gadski, R.A.; Beavers, L.S.; Little, S.P.; Yang, C.R.; Beck, J.P.; Hao, J.; et al. Intracellular Binding Site for a Positive Allosteric Modulator of the Do-pamine D1 Receptor. Mol. Pharmacol. 2018, 94, 1232–1245. [Google Scholar] [CrossRef] [PubMed]
- Covic, L.; Gresser, A.L.; Talavera, J.; Swift, S.; Kuliopulos, A. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc. Natl. Acad. Sci. USA 2002, 99, 643–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaghan, O.K.; Kuliopulos, A.; Covic, L. Turning Receptors on and Off with Intracellular Pepducins: New In-sights into G-protein-coupled Receptor Drug Development. J. Biol. Chem. 2012, 287, 12787–12796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oswald, C.; Rappas, M.; Kean, J.; Doré, A.S.; Errey, J.C.; Bennett, K.; Deflorian, F.; Christopher, J.A.; Jazayeri, A.; Mason, J.S.; et al. Intracellular allosteric antagonism of the CCR9 receptor. Nat. Cell Biol. 2016, 540, 462–465. [Google Scholar] [CrossRef]
- Liu, X.; Ahn, S.; Kahsai, A.W.; Meng, K.C.; Latorraca, N.R.; Pani, B.; Venkatakrishan, A.J.; Masaoudi, A.; Wies, W.I.; Dror, R.O.; et al. Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature 2017, 548, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Lammerich, H.P.; Busmann, A.; Kutzleb, C.; Wendland, M.; Seiler, P.; Berger, C.; Eickelmann, P.; Meyer, M.; Forssmann, W.-G.; Maronde, E. Identification and functional characterization of hemorphins VV-H-7 and LVV-H-7 as low-affinity agonists for the orphan bombesin receptor subtype. Br. J. Pharmacol. 2003, 138, 1431–1440. [Google Scholar] [CrossRef] [Green Version]
- Gorbulev, V.; Akhundova, A.; Büchner, H.; Fahrenholz, F. Molecular cloning of a new bombesin receptor subtype expressed in uterus during pregnancy. JBIC J. Biol. Inorg. Chem. 1992, 208, 405–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Liang, P.; Liu, D.; Yuan, F.; Chen, G.C.; Zhang, L.; Liu, Y.; Liu, H. Bombesin Receptor Subtype-3 in Human Diseases. Arch. Med. Res. 2019, 50, 463–467. [Google Scholar] [CrossRef]
- Alvarez, R.I.; Lee, L.; Mantey, S.A.; Jensen, R.T. Development and Characterization of a Novel, High-Affinity, Spe-cific, Radiolabeled Ligand for BRS-3 Receptors. J. Pharmacol. Exp. Ther. 2019, 369, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.H.; Chen, Y.H.; Lai, C.F.; Lin, T.Y.; Chen, Y.J.; Kao, J.H.; Huang, E.Y.K. Sex Difference of Angiotensin IV-, LVV-Hemorphin 7-, and Oxyto-cin-Induced Antiallodynia at the Spinal Level in Mice with Neuropathic Pain. Anesth. Analg. 2018, 126, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Beyer, C.E.; Dwyer, J.M.; Platt, B.J.; Neal, S.; Luo, B.; Ling, H.P.; Lin, Q.; Mark, R.J.; Rosenzweig-Lipson, S.; Schechter, L.E. Angiotensin IV elevates oxytocin levels in the rat amygdala and produces anxiolytic-like activity through subsequent oxytocin receptor activation. Psychopharmacology 2010, 209, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, K.R.; Turones, L.C.; Silva, C.G.; Gomes, K.P.; Mendonça, M.M.; Galdino, P.; Silva, C.R.; Santos, R.A.S.; Costa, E.A.; Ghedini, P.C.; et al. The hemoglobin derived peptide LVV-hemorphin-7 evokes behavioral effects mediated by oxytocin receptors. Neuropeptides 2017, 66, 59–68. [Google Scholar] [CrossRef]
- Da Cruz, K.R.; Ianzer, D.; Turones, L.C.; Reis, L.L.; Silva, G.C.; Mendonça, M.M.; da Silva, E.S.; Pedrino, G.R.; de Castro, C.H.; Costa, A.E.; et al. Behavioral effects evoked by the beta globin-derived nonapeptide LVV-H. Peptides 2019, 115, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Taylor, N.; Xie, Y.; Ford, R.; Johnson, J.; Paulsen, J.E.; Bates, B. Cloning and expression of MRG receptors in macaque, mouse, and human. Mol. Brain Res. 2005, 133, 187–197. [Google Scholar] [CrossRef]
- Dong, X.; Han, S.K.; Zylka, M.J.; Simon, M.I.; Anderson, D.J. A Diverse Family of GPCRs Expressed in Specific Subsets of Nociceptive Sensory Neurons. Cell 2001, 106, 619–632. [Google Scholar] [CrossRef] [Green Version]
- Solinski, H.J.; Boekhoff, I.; Bouvier, M.; Gudermann, T.; Breit, A. Sensory neuron-specific MAS-related gene-X1 receptors resist ago-nist-promoted endocytosis. Mol. Pharmacol. 2010, 78, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gembardt, F.; Grajewski, S.; Vahl, M.; Schultheiss, H.P.; Walther, T. Angiotensin metabolites can stimulate receptors of the Mas-related genes family. Mol. Cell. Biochem. 2008, 319, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Lembo, P.M.; Grazzini, E.; Groblewski, T.; Donnell, O.D.; Roy, M.O.; Zhang, J.; Hoffert, C.; Cao, J.; Schmidt, R.; Pelletier, M.; et al. Proenkephalin A gene products activate a new family of sensory neuron–specific GPCRs. Nat. Neurosci. 2002, 5, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Karhu, T.; Akiyama, K.; Vuolteenaho, O.; Bergmann, U.; Naito, T.; Tatemoto, K.; Herzig, K.H. Isolation of new ligands for orphan receptor MRGPRX1—hemorphins LVV-H7 and VV-H. Peptides 2017, 96, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Dumitrascuta, M.; Bermudez, M.; Ballet, S.; Wolber, G.; Spetea, M. Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt1] DALDA, and KGOP01, Binding to the Mu Opioid Receptor. Molecules 2020, 25, 2087. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayoub, M.A.; Vijayan, R. Hemorphins Targeting G Protein-Coupled Receptors. Pharmaceuticals 2021, 14, 225. https://doi.org/10.3390/ph14030225
Ayoub MA, Vijayan R. Hemorphins Targeting G Protein-Coupled Receptors. Pharmaceuticals. 2021; 14(3):225. https://doi.org/10.3390/ph14030225
Chicago/Turabian StyleAyoub, Mohammed Akli, and Ranjit Vijayan. 2021. "Hemorphins Targeting G Protein-Coupled Receptors" Pharmaceuticals 14, no. 3: 225. https://doi.org/10.3390/ph14030225
APA StyleAyoub, M. A., & Vijayan, R. (2021). Hemorphins Targeting G Protein-Coupled Receptors. Pharmaceuticals, 14(3), 225. https://doi.org/10.3390/ph14030225