(2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. MMP Inhibition Assays
3.2. Chemical Methods
3.2.1. General Procedure for the Preparation of Tetraethyl Bisphosphonates (1a–4a)
3.2.2. General Procedure for N-Acylation of Compound 5b
3.2.3. General Procedure for the Preparation of 1,1-Bisphosphonic Acids (1–12)
3.3. Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winer, A.; Adams, S.; Mignatti, P. Matrix Metalloproteinase Inhibitors in Cancer Therapy: Turning Past Failures into Future Successes. Mol. Cancer Ther. 2018, 17, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Conlon, G.A.; Murray, G.I. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J. Pathol. 2019, 247, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Tay, F.R.; Yiu, C.K.Y. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol. Ther. 2020, 207, 107465. [Google Scholar] [CrossRef]
- Lynch, C.C. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 2011, 48, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Guise, T.A.; Chirgwin, J. Transforming Growth Factor-Beta in Osteolytic Breast Cancer Bone Metastases. Clin. Orthop. Relat. Res. 2003, 415, S32–S38. [Google Scholar] [CrossRef]
- Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix Metalloproteinase Inhibitors and Cancer--Trials and Tribulations. Science 2002, 295, 2387–2392. [Google Scholar] [CrossRef]
- Von Moos, R.; Costa, L.; Gonzalez-Suarez, E.; Terpos, E.; Niepel, D.; Body, J. Management of bone health in solid tumours: From bisphosphonates to a monoclonal antibody. Cancer Treat. Rev. 2019, 76, 57–67. [Google Scholar] [CrossRef]
- Tauro, M.; Shay, G.; Sansil, S.S.; Laghezza, A.; Tortorella, P.; Neuger, A.M.; Soliman, H.; Lynch, C.C. Bone-Seeking Matrix Metalloproteinase-2 Inhibitors Prevent Bone Metastatic Breast Cancer Growth. Mol. Cancer Ther. 2017, 16, 494–505. [Google Scholar] [CrossRef]
- Jakob, T.; Tesfamariam, Y.M.; Macherey, S.; Kuhr, K.; Adams, A.; Monsef, I.; Heidenreich, A.; Skoetz, N. Bisphosphonates or RANK-ligand-inhibitors for men with prostate cancer and bone metastases: A network meta-analysis. Cochrane Database Syst. Rev. 2020, 12. [Google Scholar] [CrossRef]
- Wang, L.; Fang, D.; Xu, J.; Luo, R. Various pathways of zoledronic acid against osteoclasts and bone cancer metastasis: A brief review. BMC Cancer 2020, 20, 1059. [Google Scholar] [CrossRef]
- Leuci, R.; Brunetti, L.; Laghezza, A.; Loiodice, F.; Tortorella, P.; Piemontese, L. Importance of Biometals as Targets in Medicinal Chemistry: An Overview about the Role of Zinc (II) Chelating Agents. Appl. Sci. 2020, 10, 4118. [Google Scholar] [CrossRef]
- Tauro, M.; Laghezza, A.; Campestre, C.; Tortorella, P.; Loiodice, F.; Piemontese, L.; CaraDonna, A.; Capelli, D.; Montanari, R.; Pochetti, G.; et al. Catechol-based matrix metalloproteinase inhibitors with additional antioxidative activity. J. Enzyme Inhib. Med. Chem. 2016, 31, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Tauro, M.; Loiodice, F.; Ceruso, M.; Supuran, C.T.; Tortorella, P. Arylamino bisphosphonates: Potent and selective inhibitors of the tumor-associated carbonic anhydrase XII. Bioorg. Med. Chem. Lett. 2014, 24, 1941–1943. [Google Scholar] [CrossRef] [PubMed]
- Tauro, M.; Loiodice, F.; Ceruso, M.; Supuran, C.T.; Tortorella, P. Dual carbonic anhydrase/matrix metalloproteinase inhibitors incorporating bisphosphonic acid moieties targeting bone tumors. Bioorg. Med. Chem. Lett. 2014, 24, 2617–2620. [Google Scholar] [CrossRef]
- Tauro, M.; Laghezza, A.; Loiodice, F.; Agamennone, M.; Campestre, C.; Tortorella, P. Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Bioorg. Med. Chem. 2013, 21, 6456–6465. [Google Scholar] [CrossRef]
- Savino, S.; Toscano, A.; Purgatorio, R.; Profilo, E.; Laghezza, A.; Tortorella, P.; Angelelli, M.; Cellamare, S.; Scala, R.; Tricarico, D.; et al. Novel bisphosphonates with antiresorptive effect in bone mineralization and osteoclastogenesis. Eur. J. Med. Chem. 2018, 158, 184–200. [Google Scholar] [CrossRef]
- Shay, G.; Tauro, M.; Loiodice, F.; Tortorella, P.; Sullivan, D.M.; Hazlehurst, L.A.; Lynch, C.C. Selective inhibition of matrix metalloproteinase-2 in the multiple myeloma-bone microenvironment. Oncotarget 2017, 8, 41827–41840. [Google Scholar] [CrossRef]
- Laghezza, A.; Piemontese, L.; Loiodice, F.; Tortorella, P.; Brunetti, L.; CaraDonna, A.; Agamennone, M.; Di Pizio, A.; Pochetti, G.; Montanari, R.; et al. Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy. Pharmaceuticals 2020, 13, 113. [Google Scholar] [CrossRef]
- Rubino, M.T.; Agamennone, M.; Campestre, C.; Campiglia, P.; Cremasco, V.; Faccio, R.; Laghezza, A.; Loiodice, F.; Maggi, D.; Panza, E.; et al. Biphenyl Sulfonylamino Methyl Bisphosphonic Acids as Inhibitors of Matrix Metalloproteinases and Bone Resorption. ChemMedChem 2011, 6, 1258–1268. [Google Scholar] [CrossRef]
- Aureli, L.; Gioia, M.; Cerbara, I.; Monaco, S.; Fasciglione, G.F.; Marini, S.; Ascenzi, P.; Topai, A.; Coletta, M. Structural Bases for Substrate and Inhibitor Recognition by Matrix Metalloproteinases. Curr. Med. Chem. 2008, 15, 2192–2222. [Google Scholar] [CrossRef]
- Cawston, T.E.; Wilson, A.J. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pr. Res. Clin. Rheumatol. 2006, 20, 983–1002. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.H.; Huang, D.; Blick, T.; Connor, A.; Reiter, L.A.; Hardink, J.R.; Lynch, C.C.; Waltham, M.; Thompson, E.W. An MMP13-Selective Inhibitor Delays Primary Tumor Growth and the Onset of Tumor-Associated Osteolytic Lesions in Experimental Models of Breast Cancer. PLoS ONE 2012, 7, e29615. [Google Scholar] [CrossRef] [PubMed]
- Nannuru, K.C.; Futakuchi, M.; Varney, M.L.; Vincent, T.M.; Marcusson, E.G.; Singh, R.K. Matrix Metalloproteinase (MMP)-13 Regulates Mammary Tumor–Induced Osteolysis by Activating MMP9 and Transforming Growth Factor-β Signaling at the Tumor-Bone Interface. Cancer Res. 2010, 70, 3494–3504. [Google Scholar] [CrossRef]
- Ohshiba, T.; Miyaura, C.; Inada, M.; Ito, A. Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis. Br. J. Cancer 2003, 88, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.-W.; Wan, R.-Z.; Liu, Z.-P. Recent Research Advances in Selective Matrix Metalloproteinase-13 Inhibitors as Anti-Osteoarthritis Agents. ChemMedChem 2017, 12, 1157–1168. [Google Scholar] [CrossRef]
- Fischer, T.; Riedl, R. Molecular Recognition of the Catalytic Zinc (II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies. Int. J. Mol. Sci. 2016, 17, 314. [Google Scholar] [CrossRef]
- Cheng, X.-C.; Wang, Q.; Fang, H.; Xu, W.-F. Role of sulfonamide group in matrix metalloproteinase inhibitors. Curr. Med. Chem. 2008, 15, 368–373. [Google Scholar] [CrossRef]
- Gimeno, A.; Beltrán-Debón, R.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. Understanding the variability of the S1′ pocket to improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discov. Today 2020, 25, 38–57. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Schrödinger LLC. Schrödinger Suite 2019-3: MacroModel, Glide, SiteMap, Maestro; Schrödinger: New York, NY, USA, 2019. [Google Scholar]
ML115 | 1: R = H 2: R = F 3: R = Cl 4: R = NO2 |
5: R = H 6: R = Br 7: R = NO2 | 8 |
9 | 10 |
11 | 12 |
Compound | R | n | MMP-2 | MMP-8 | MMP-9 | MMP-13 |
---|---|---|---|---|---|---|
ML 115 | 0.14 ± 0.04 a | 0.40 ± 0.03 a | >100 a | 0.6 ± 0.3 | ||
1 | H | 0 | 12.7 ± 0.8 | 84.3 ± 2.1 | >100 | 6.5 ± 1.2 |
2 | F | 0 | 9.0 ± 0.9 | 32.1 ± 1.9 | 26.5 ± 2.7 | 4.25 ± 0.35 |
3 | Cl | 0 | 2.64 ± 0.04 | 14.6 ± 0.2 | 18.7 ± 2.9 | 1.23 ± 0.12 |
4 | NO2 | 0 | 4.5 ± 0.5 | 9.0 ± 0.4 | 7.7 ± 1.1 | 2.25 ± 0.15 |
5 | NHCOPh | 0 | 1.16 ± 0.18 | 9.0 ± 0.3 | 6.3 ± 0.9 | 0.670 ± 0.025 |
6 | NHCOPh-4-Br | 0 | 13.8 ± 0.9 | 60 ± 2.6 | >100 | 6.7 ± 0.5 |
7 | NHCOPh-4-NO2 | 0 | 0.98 ± 0.16 | 6.7 ± 0.8 | 5.4 ± 1.1 | 0.50 ± 0.01 |
8 | NHCOCH2Ph | 0 | 2.4 ± 0.5 | 10.8 ± 3.1 | 22 ± 8 | 9.3 ± 0.7 |
9 | NHCONHPh | 0 | 3.0 ± 0.4 | 15 ± 5 | 13.6 ± 1.4 | 11.5 ± 1.9 |
10 | N(CO)2Ph | 0 | 1.69 ± 0.08 | 12.0 ± 0.4 | 5.4 ± 1.6 | 10.9 ± 2.4 |
11 | (S)-NHCOCH(CH3)NH2 | 0 | 9.4 ± 2.0 | 54 ± 6 | >100 | 61.9 ± 1.3 |
12 | Cl | 1 | 4.7 ± 1.1 | 21.3 ± 1.7 | 36.6 ± 1.8 | 0.82 ± 0.06 |
Compound | Selectivity | Ligand Efficiency | |||||
---|---|---|---|---|---|---|---|
MMP-2/13 | MMP-8/13 | MMP-9/13 | MMP-2 | MMP-8 | MMP-9 | MMP-13 | |
ML115 | 0.23 | 0.67 | >166.67 | 0.38 | 0.35 | - | 0.34 |
1 | 1.95 | 12.97 | >15.4 | 0.36 | 0.30 | - | 0.38 |
2 | 2.12 | 7.55 | 6.24 | 0.35 | 0.31 | 0.31 | 0.37 |
3 | 2.15 | 11.87 | 15.20 | 0.38 | 0.33 | 0.32 | 0.41 |
4 | 2.00 | 4.00 | 3.42 | 0.33 | 0.31 | 0.32 | 0.35 |
5 | 1.73 | 13.43 | 9.40 | 0.29 | 0.25 | 0.25 | 0.30 |
6 | 2.06 | 8.96 | >14.92 | 0.22 | 0.19 | - | 0.24 |
7 | 1.96 | 13.40 | 10.80 | 0.27 | 0.23 | 0.23 | 0.28 |
8 | 0.26 | 1.16 | 2.37 | 0.27 | 0.23 | 0.22 | 0.24 |
9 | 0.26 | 1.30 | 1.18 | 0.26 | 0.23 | 0.23 | 0.23 |
10 | 0.16 | 1.10 | 0.50 | 0.26 | 0.23 | 0.24 | 0.23 |
11 | 0.15 | 0.87 | >1.62 | 0.28 | 0.23 | - | 0.23 |
12 | 5.73 | 25.98 | 44.63 | 0.35 | 0.31 | 0.29 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laghezza, A.; Piemontese, L.; Brunetti, L.; Caradonna, A.; Agamennone, M.; Loiodice, F.; Tortorella, P. (2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone. Pharmaceuticals 2021, 14, 85. https://doi.org/10.3390/ph14020085
Laghezza A, Piemontese L, Brunetti L, Caradonna A, Agamennone M, Loiodice F, Tortorella P. (2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone. Pharmaceuticals. 2021; 14(2):85. https://doi.org/10.3390/ph14020085
Chicago/Turabian StyleLaghezza, Antonio, Luca Piemontese, Leonardo Brunetti, Alessia Caradonna, Mariangela Agamennone, Fulvio Loiodice, and Paolo Tortorella. 2021. "(2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone" Pharmaceuticals 14, no. 2: 85. https://doi.org/10.3390/ph14020085
APA StyleLaghezza, A., Piemontese, L., Brunetti, L., Caradonna, A., Agamennone, M., Loiodice, F., & Tortorella, P. (2021). (2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone. Pharmaceuticals, 14(2), 85. https://doi.org/10.3390/ph14020085