Tisagenlecleucel in Children and Young Adults: Reverse Translational Research by Using Real-World Safety Data
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brentjens, R.J.; Santos, E.; Nikhamin, Y.; Yeh, R.; Matsushita, M.; La Perle, K.; Larson, S.M.; Sadelain, M.; Quintás-Cardama, A. Genetically Targeted T Cells Eradicate Systemic Acute Lymphoblastic Leukemia Xenografts. Clin. Cancer Res. 2007, 13, 5426–5435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milone, M.C.; Fish, J.D.; Carpenito, C.; Carroll, R.G.; Binder, G.K.; Teachey, D.; Samanta, M.; Lakhal, M.; Gloss, B.; Danet-Desnoyers, G.; et al. Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy In Vivo. Mol. Ther. 2009, 17, 1453–1464. [Google Scholar] [CrossRef] [PubMed]
- Kochenderfer, J.N.; Wilson, W.H.; Janik, J.E.; Dudley, M.E.; Stetler-Stevenson, M.; Feldman, S.A.; Maric, I.; Raffeld, M.; Nathan, D.-A.N.; Lanier, B.J.; et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010, 116, 4099–4102. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 2011, 365, 725–733, Erratum in N. Engl. J. Med. 2016, 374, 998. [Google Scholar] [CrossRef] [Green Version]
- Brentjens, R.J.; Rivière, I.; Park, J.H.; Davila, M.L.; Wang, X.; Stefanski, J.; Taylor, C.; Yeh, R.; Bartido, S.; Borquez-Ojeda, O.; et al. Safety and persistence of adoptive lytransferred autologous CD19-targeted T cells in patients with relapse dorchemotherapy refractory B-cell leukemias. Blood 2011, 118, 4817–4828. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Dudley, M.E.; Feldman, S.A.; Wilson, W.H.; Spaner, D.E.; Maric, I.; Stetler-Stevenson, M.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells. Blood 2012, 119, 2709–2720. [Google Scholar] [CrossRef]
- Brentjens, R.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci. Transl. Med. 2013, 5, 177ra38. [Google Scholar] [CrossRef] [Green Version]
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N. Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef] [Green Version]
- Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.; Carpenter, R.O.; Stetler-Stevenson, M.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; et al. Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor. J. Clin. Oncol. 2015, 33, 540–549. [Google Scholar] [CrossRef] [Green Version]
- Uckun, F.M.; Jaszcz, W.; Ambrus, J.L.; Fauci, A.S.; Gajl-Peczalska, K.; Song, C.W.; Wick, M.R.; Myers, D.E.; Waddick, K.; Ledbetter, J.A. Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood 1988, 71, 13–29. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration—FDA Approves Tisagenlecleucel for B-Cell ALL and Tocilizumab for Cytokine Release Syndrome. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tisagenlecleucel-b-cell-all-and-tocilizumab-cytokine-release-syndrome (accessed on 26 February 2020).
- US Food and Drug Administration—FDA Approves Tisagenlecleucel for Adults with Relapsed or Refractory Large B-Cell Lymphoma. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tisagenlecleucel-adults-relapsed-or-refractory-large-b-cell-lymphoma (accessed on 26 February 2020).
- European Medicines Agency (EMA)—Kymriah: EPAR-Product Information. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/kymriah (accessed on 26 February 2020).
- Porter, D.L.; Hwang, W.-T.; Frey, N.V.; Lacey, S.F.; Shaw, P.A.; Loren, A.W.; Bagg, A.; Marcucci, K.T.; Shen, A.; Gonzalez, V.; et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 2015, 7, 303ra139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517, Erratum in N. Engl. J. Med. 2016, 374, 998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maude, S.L.; Pulsipher, M.A.; Boyer, M.W.; Grupp, S.A.; Davies, S.M.; Phillips, C.L.; Verneris, M.R.; August, K.J.; Schlis, K.; Driscoll, T.A.; et al. Efficacy and Safety of CTL019 in the First US Phase II Multicenter Trial in Pediatric Relapsed/Refractory Acute Lymphoblastic Leukemia: Results of an Interim Analysis. Blood 2016, 128, 2801. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Scavone, C.; Mascolo, A.; Ruggiero, R.; Sportiello, L.; Rafaniello, C.; Berrino, L.; Capuano, A. Quinolones-Induced Musculoskeletal, Neurological, and Psychiatric ADRs: A Pharmacovigilance Study Based on Data From the Italian Spontaneous Reporting System. Front. Pharmacol. 2020, 11, 428. [Google Scholar] [CrossRef]
- Scavone, C.; Stelitano, B.; Rafaniello, C.; Rossi, F.; Sportiello, L.; Capuano, A. Drugs-Induced Pathological Gambling: An Analysis of Italian Spontaneous Reporting System. J. Gambl. Stud. 2020, 36, 85–96. [Google Scholar] [CrossRef] [Green Version]
- European Medicine Agency—EMA, Assessment Report Kymriah (Tisagenlecleucel), Section 2.7 “Risk Management Plan”. Available online: https://www.ema.europa.eu/en/documents/assessment-report/kymriah-epar-public-assessment-report_en.pdf (accessed on 26 February 2020).
- Badar, T.; Shah, N.N. Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia. Curr. Treat. Options Oncol. 2020, 21, 16. [Google Scholar] [CrossRef]
- Santomasso, B.; Bachier, C.; Westin, J.; Rezvani, K.; Shpall, E.J. The Other Side of CAR T-Cell Therapy: Cytokine Release Syndrome, Neurologic Toxicity, and Financial Burden. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 433–444. [Google Scholar] [CrossRef]
- Kansagra, A.J.; Frey, N.V.; Bar, M.; Laetsch, T.W.; Carpenter, P.A.; Savani, B.N.; Heslop, H.E.; Bollard, C.M.; Komanduri, K.V.; Gastineau, D.A.; et al. Clinical utilization of Chimeric Antigen Receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)–an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplant. 2019, 54, 1868–1880. [Google Scholar]
- Fitzgerald, J.C.; Weiss, S.L.; Maude, S.L.; Barrett, D.M.; Lacey, S.F.; Melenhorst, J.J.; Shaw, P.; Berg, R.A.; June, C.H.; Porter, D.L.; et al. Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia. Crit. Care Med. 2017, 45, e124–e131. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, L.F.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-celltherapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Gofshteyn, J.S.; Shaw, P.A.; Teachey, D.T.; Grupp, S.A.; Maude, S.; Banwell, B.; Chen, F.; Lacey, S.F.; Melenhorst, J.J.; Edmondson, M.; et al. Neurotoxicity after CTL019 in a pediatric and young adult cohort. Ann. Neurol. 2018, 84, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Pacenta, H.L.; Laetsch, T.W.; John, S. CD19 CAR T Cells for the Treatment of Pediatric Pre-B Cell Acute Lymphoblastic Leukemia. Pediatr. Drugs 2020, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.; Bezerra, E.D.; Hirayama, A.V.; Hill, J.A.; Wu, Q.V.; Voutsinas, J.; Sorror, M.L.; Turtle, C.J.; Maloney, D.G.; Bar, M.; et al. Late Events after Treatment with CD19-Targeted Chimeric Antigen Receptor Modified T Cells. Biol. Blood Marrow Transplant. 2019, 26, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Callahan, C.; Barry, A.; Fooks-Parker, S.; Smith, L.; Baniewicz, D.; Hobbie, W. Pediatric Survivorship: Considerations Following CAR T-Cell Therapy. Clin. J. Oncol. Nurs. 2019, 23, 35–41. [Google Scholar]
- Alcantara, M.; Tesio, M.; June, C.H.; Houot, R. CAR T-cells for T-cell malignancies: Challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia 2018, 32, 2307–2315. [Google Scholar] [CrossRef]
- Yáñez, L.; Sánchez-Escamilla, M.; Perales, M.A. CAR T Cell Toxicity: Current Management and Future Directions. Hemasphere 2019, 3, e186. [Google Scholar] [CrossRef]
- Hazell, L.; Shakir, S.A. Under-Reporting of Adverse Drug Reactions. Drug Saf. 2006, 29, 385–396. [Google Scholar] [CrossRef]
- Ferrajolo, C.; Capuano, A.; Trifirò, G.; Moretti, U.; Rossi, F.; Santuccio, C. Pediatric drug safety surveillance in Italian pharmacovigilance network: An overview of adverse drug reactions in the years 2001–2012. Expert Opin. Drug Saf. 2014, 13, 9–20. [Google Scholar] [CrossRef]
- Scavone, C.; di Mauro, C.; Ruggiero, R.; Bernardi, F.F.; Trama, U.; Aiezza, M.L.; Rafaniello, C.; Capuano, A. Severe Cutaneous Adverse Drug Reactions Associated with Allopurinol: An Analysis of Spontaneous Reporting System in Southern Italy. Drugs Real World Outcomes 2019, 7, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postigo, R.; Brosch, S.; Slattery, J.; van Haren, A.; Dogné, J.-M.; Kurz, X.; Candore, G.; Domergue, F.; Arlett, P. EudraVigilance Medicines Safety Database: Publicly Accessible Data for Research and Public Health Protection. Drug Saf. 2018, 41, 665–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographic Characteristics of Selected ICSRs | Individual Case Safety Reports N = 117 (%) |
---|---|
Gender a | |
Male | 57 (55.3) |
Female | 46 (44.7) |
Mean Age (SD b) | 9 (±4.6) |
Report Type | |
Spontaneous | 117 (100.0) |
From studies | - |
Primary Source | |
Health Care Professional | 108 (92.3) |
Non- Health Care Professional | 9 (7.7) |
Country | |
European Economic Area | 27 (23.1) |
Non-European Economic Area | 90 (76.9) |
Indication of Use | ICSRs a N = 114 b (%) |
---|---|
Acute lymphoblastic leukaemia | 63 (55.3) |
Acute lymphoblastic leukaemia recurrent | 29 (25.4) |
Product used for unknown indication | 4 (3.5) |
B-cell lymphoma recurrent | 4 (3.5) |
Acute lymphocytic leukaemia recurrent | 3 (2.6) |
Acute lymphocytic leukaemia refractory | 3 (2.6) |
B-cell type acute leukaemia | 2 (1.8) |
Bone marrow disorder | 2 (1.8) |
Acute lymphocytic leukaemia | 1 (0.9) |
B-cell lymphocytic lymphoma recurrent | 1 (0.9) |
Leukaemia recurrent | 1 (0.9) |
Precursor B-lymphoblastic leukaemia acute | 1 (0.9) |
SOC and Preferred Term | Adverse Events N (%) |
---|---|
Investigations | 99 (100) |
Serum ferritin increased | 7 (7.1) |
C-reactive protein increased | 6 (6.1) |
Fibrin D dimer increased | 4 (4.0) |
Activated partial thromboplastin time prolonged | 3 (3.0) |
Blood potassium decreased | 3 (3.0) |
B-lymphocyte count abnormal | 3 (3.0) |
International normalised ratio increased | 3 (3.0) |
Blood albumin decreased | 2 (2.0) |
Blood bilirubin increased | 2 (2.0) |
Blood calcium decreased | 2 (2.0) |
Blood fibrinogen increased | 2 (2.0) |
Blood lactate dehydrogenase increased | 2 (2.0) |
Blood phosphorus decreased | 2 (2.0) |
Blood pressure diastolic decreased | 2 (2.0) |
Haematocrit decreased | 2 (2.0) |
Haemoglobin decreased | 2 (2.0) |
Lymphocyte count decreased | 2 (2.0) |
Platelet count decreased | 2 (2.0) |
Prothrombin time prolonged | 2 (2.0) |
Red blood cell count decreased | 2 (2.0) |
White blood cell count decreased | 2 (2.0) |
General disorders and administration site conditions | 74 (100) |
Pyrexia | 45 (60.8) |
Death | 5 (6.8) |
Fatigue | 5 (6.8) |
Therapy non-responder | 3 (4.1) |
Disease progression | 2 (2.7) |
Drug ineffective | 2 (2.7) |
Multiple organ dysfunction syndrome | 2 (2.7) |
Nervous System Disorders | 71 (100) |
Neurotoxicity | 18 (25.4) |
Headache | 8 (11.3) |
Seizure | 5 (7.0) |
Encephalopathy | 4 (5.6) |
aphasia | 3 (4.2) |
Facial paralysis | 3 (4.2) |
Lethargy | 2 (2.8) |
Blood and lymphatic system disorders | 67 (100) |
Neutropenia | 13 (19.4) |
Anaemia | 12 (17.9) |
Coagulopathy | 9 (13.4) |
B-cell aplasia | 8 (11.9) |
Thrombocytopenia | 8 (11.9) |
Febrile neutropenia | 7 (10.4) |
Bone marrow failure | 2 (3.0) |
Leukopenia | 2 (3.0) |
Neoplasms benign. malignant and unspecified | 63 (100) |
Acute lymphocytic leukaemia recurrent | 27 (42.9) |
Malignant neoplasm progression | 17 (27.0) |
Acute lymphocytic leukaemia | 9 (14.3) |
Central nervous system leukaemia | 2 (3.2) |
Minimal residual disease | 2 (3.2) |
Immune system disorders | 56 (100) |
Cytokine release syndrome | 54 (96.4) |
Anti-infectives for systemic use (J) | 62 (23.5) |
Antibacterials for systemic use (J01) | 43 |
Antimycotics for systemic use (J02) | 15 |
Antivirals for systemic use (J03) | 2 |
Antimycobacterials (J04) | 1 |
Immune sera and immunoglobulins (J06) | 1 |
Nervous system (N) | 43 (16.3) |
Analgesics (N02) | 15 |
Antiepileptics (N03) | 12 |
Anesthetics (N01) | 9 |
Psycholeptics (N05) | 6 |
Other nervous system drugs (N07) | 1 |
Alimentary tract and metabolism (A) | 42 (15.9) |
Antiemetics and antinauseants (A04) | 11 |
Drugs for acid related disorders (A02) | 6 |
Drugs for constipation (A06) | 6 |
Mineral supplements (A12) | 6 |
Drugs for functional gastrointestinal disorders (A03) | 3 |
Bile and liver therapy (A05) | 3 |
Antidiarrheals, intestinal anti-inflammatory/anti-infective agents (A07) | 3 |
Vitamins (A11) | 2 |
Drugs used in diabetes (A10) | 1 |
Other alimentary tract and metabolism products (A16) | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafaniello, C.; Ferrajolo, C.; Gaio, M.; Zinzi, A.; Scavone, C.; Sullo, M.G.; Rossi, F.; Berrino, L.; Capuano, A. Tisagenlecleucel in Children and Young Adults: Reverse Translational Research by Using Real-World Safety Data. Pharmaceuticals 2020, 13, 258. https://doi.org/10.3390/ph13090258
Rafaniello C, Ferrajolo C, Gaio M, Zinzi A, Scavone C, Sullo MG, Rossi F, Berrino L, Capuano A. Tisagenlecleucel in Children and Young Adults: Reverse Translational Research by Using Real-World Safety Data. Pharmaceuticals. 2020; 13(9):258. https://doi.org/10.3390/ph13090258
Chicago/Turabian StyleRafaniello, Concetta, Carmen Ferrajolo, Mario Gaio, Alessia Zinzi, Cristina Scavone, Maria Giuseppa Sullo, Francesco Rossi, Liberato Berrino, and Annalisa Capuano. 2020. "Tisagenlecleucel in Children and Young Adults: Reverse Translational Research by Using Real-World Safety Data" Pharmaceuticals 13, no. 9: 258. https://doi.org/10.3390/ph13090258
APA StyleRafaniello, C., Ferrajolo, C., Gaio, M., Zinzi, A., Scavone, C., Sullo, M. G., Rossi, F., Berrino, L., & Capuano, A. (2020). Tisagenlecleucel in Children and Young Adults: Reverse Translational Research by Using Real-World Safety Data. Pharmaceuticals, 13(9), 258. https://doi.org/10.3390/ph13090258