CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders
Abstract
:1. Introduction
2. Results and Discussion
2.1. CCL-11 and CCR3 in Allergic Inflammation
2.2. CCL-11, the Blood-Brain Barrier and the CNS
2.3. CCL-11: An Endogenous Cognitive Deteriorating Chemokine
2.4. CCL-11 in Schizophrenia
2.5. CCL-11 in Mood Disorders
2.6. CCL-11 in Other Psychiatric Disorders
2.6.1. CCL-11 in Obsessive-Compulsive Disorder
2.6.2. CCL-11 in Autism Spectrum Disorder
2.6.3. CCL-11 in Substance Abuse Disorders
2.7. CCL-11 in Neuro-Inflammatory Disorders
2.7.1. CCL-11 and Parkinson’s Disease
2.7.2. CCL-11 and Alzheimer’s Disease
2.7.3. CCL-11 and Multiple Sclerosis
2.7.4. CCL-11 and Stroke
2.8. Possible Novel Treatments Targeting CCL-11
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABAC | Accelerated Brain-Ageing Chemokine |
AD | Alzheimer’s Disease |
Anti-CCL11 | Eotaxin-1 Antibody |
ASD | Autism Spectrum Disorder |
ASM | Airway Smooth Muscle |
BBB | Blood-Brain Barrier |
BMP | Bone Morphogenetic Proteins |
CANTAB | Cambridge Neuropsychological Test Automated Battery |
CCL | C-C motif chemokine Ligand |
CCL-11 | Eotaxin-1, eosinophil chemotactic protein |
CCL-2 | C-C motif chemokine Ligand 2 |
CCL-5 | C-C motif chemokine Ligand 5 |
CCL-24 | Eotaxin-2 |
CCL-26 | Eotaxin-3 |
CCR | Chemokine Receptors |
Cdk5 | Cyclin-dependent kinase 5 |
CERAD | Consortium to Establish a Registry for Alzheimer’s Disease |
CIRS | Compensatory Immune-Regulatory System |
CNS | Central Nervous System |
CSF | Cerebrospinal Fluid |
CX3CL1 | C-X3-C motif chemokine Ligand 1 |
CXCL | C-X-C motif Ligand |
CXCR3 | C-X-C chemokine receptor 3 |
CXCL9 | C-C motif chemokine Ligand 9 |
CXCL8 | C-C motif chemokine Ligand 8 |
CXCL12 | C-C motif chemokine Ligand 12 |
DKK1 | Dickkoph-1-related protein |
DRSP | Daily Record of Severity of Problems |
EAE | Autoimmune Encephalomyelitis |
ECDC | Endogenous Cognition Deteriorating Chemokine |
FGF-2 | Fibroblast Growth Factor- 2 |
GDF | Growth Differentiation Factor |
GSK3 | Glycogen Synthase Kinase-3β |
HPAEC | Human Pulmonary Artery Endothelial Cells |
IFN-γ | Interferon-gamma |
IgA | Immunoglobulin A |
IgG4 | Immunoglobulin G4 |
IL-4 | Interleukin-4 |
IL-6 | Interleukin-6 |
IL-10 | Interleukin-10 |
IL-13 | Interleukin-13 |
IL-1β | Interleukin-1 beta |
IL-1RA | Interleukin-1 Receptor Antagonist |
MCAS | Menstrual Cycle-Associated Syndrome |
MCP | Monocyte Chemoattractant Protein |
MMSE | Mini-Mental State Examination |
MS | Multiple Sclerosis |
NF-κB | Nuclear Factor-kappa B |
NMO | Neuromyelitis Optica |
NMOSD | NMO Spectrum Disorders |
NOX1 | NADPH Oxidase 1 |
OCD | Obsessive-Compulsive Disorder |
OTS | One-Touch Stockings of Cambridge |
PMS | Premenstrual Syndrome |
ROS | Reactive Oxygen Species |
SCZ | Schizophrenia |
SNPs | Single-Nucleotide Polymorphisms |
sTNF-R1 | Soluble Tumour Necrosis Factor-Receptor 1 |
sTNF-R2 | Soluble Tumour Necrosis Factor-Receptor 2 |
TGF-β1 | Transforming Growth Factor-beta 1 |
Th-1 | T helper-1 |
Th-2 | T helper-2 |
Th-17 | T helper-17 |
TNF-α | Tumour Necrosis Factor-alpha |
TOAST | Trial of ORG 10172 in Acute Stroke Treatment |
Treg | T regulatory |
TRYCAT | Tryptophan Catabolites |
VFT | Verbal Fluency Test |
References
- Foxman, E.F.; Campbell, J.J.; Butcher, E.C. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 1997, 139, 1349–1360. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.M.; Baggiolini, M.; Charo, I.F.; Hébert, C.A.; Horuk, R.; Matsushima, K.; Miller, L.H.; Oppenheim, J.J.; Power, C.A. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 2000, 52, 145–176. [Google Scholar] [PubMed]
- Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 1994, 76, 301–314. [Google Scholar] [CrossRef]
- Wu, V.Y.; Walz, D.A.; McCoy, L.E. Purification and characterization of human and bovine platelet factor 4. Prep. Biochem. 1977, 7, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Callewaere, C.; Banisadr, G.; Rostène, W.; Parsadaniantz, S.M. Chemokines and chemokine receptors in the brain: Implication in neuroendocrine regulation. J. Mol. Endocrinol. 2007, 38, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Tani, M.; Ransohoff, R.M. Do chemokines mediate inflammatory cell invasion of the central nervous system parenchyma? Brain Pathol. 1994, 4, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Reaux-Le Goazigo, A.; Van Steenwinckel, J.; Rostene, W.; Melik Parsadaniantz, S. Current status of chemokines in the adult CNS. Prog. Neurobiol. 2013, 104, 67–92. [Google Scholar] [CrossRef]
- Teixeira, A.L.; Gama, C.S.; Rocha, N.P.; Teixeira, M.M. Revisiting the Role of Eotaxin-1/CCL11 in Psychiatric Disorders. Front. Psychiatr. 2018, 9, 241. [Google Scholar] [CrossRef]
- Sirivichayakul, S.; Kanchanatawan, B.; Thika, S.; Carvalho, A.F.; Maes, M. A new schizophrenia model: Immune activation is associated with induction of different neurotoxic products which together determine memory impairments and schizophrenia symptom dimensions. CNS Neurol. Disord. Drug Targets 2019, 18, 124–140. [Google Scholar] [CrossRef]
- Kindstedt, E.; Holm, C.K.; Sulniute, R.; Martinez-Carrasco, I.; Lundmark, R.; Lundberg, P. CCL11, a novel mediator of inflammatory bone resorption. Sci. Rep. 2017, 7, 5334. [Google Scholar] [CrossRef]
- Sirivichayakul, S.; Kanchanatawan, B.; Thika, S.; Carvalho, A.F.; Maes, M. Eotaxin, an Endogenous Cognitive Deteriorating Chemokine (ECDC), Is a Major Contributor to Cognitive Decline in Normal People and to Executive, Memory, and Sustained Attention Deficits, Formal Thought Disorders, and Psychopathology in Schizophrenia Patients. Neurotox. Res. 2019, 35, 122–138. [Google Scholar] [CrossRef]
- Villeda, S.A.; Luo, J.; Mosher, K.I.; Zou, B.; Britschgi, M.; Bieri, G.; Stan, T.M.; Fainberg, N.; Ding, Z.; Eggel, A.; et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011, 477, 90–94. [Google Scholar] [CrossRef]
- Sørensen, T.L.; Tani, M.; Jensen, J.; Pierce, V.; Lucchinetti, C.; Folcik, V.A.; Qin, S.; Rottman, J.; Sellebjerg, F.; Strieter, R.M.; et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Investig. 1999, 103, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Eyre, H.; Baune, B.T. Neuroplastic changes in depression: A role for the immune system. Psychoneuroendocrinology 2012, 37, 1397–1416. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.J.; Corrigan, F.; Baune, B.T. Knockout of CXCR5 increases the population of immature neural cells and decreases proliferation in the hippocampal dentate gyrus. J. Neuroinflamm. 2014, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Baruch, K.; Ron-Harel, N.; Gal, H.; Deczkowska, A.; Shifrut, E.; Ndifon, W.; Mirlas-Neisberg, N.; Cardon, M.; Vaknin, I.; Cahalon, L.; et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc. Natl. Acad. Sci. USA 2013, 110, 2264–2269. [Google Scholar] [CrossRef]
- Yamagami, S.; Tanaka, H.; Endo, N. Monocyte chemoattractant protein-2 can exert its effects through the MCP-1 receptor (CC CKR2B). FEBS Lett. 1997, 400, 329–332. [Google Scholar] [CrossRef]
- Jose, P.J.; Griffiths-Johnson, D.A.; Collins, P.D.; Walsh, D.T.; Moqbel, R.; Totty, N.F.; Truong, O.; Hsuan, J.J.; Williams, T.J. Eotaxin: A potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J. Exp. Med. 1994, 179, 881–887. [Google Scholar] [CrossRef]
- Ponath, P.D.; Qin, S.; Post, T.W.; Wang, J.; Wu, L.; Gerard, N.P.; Newman, W.; Gerard, C.; Mackay, C.R. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J. Exp. Med. 1996, 183, 2437–2448. [Google Scholar] [CrossRef]
- Sallusto, F.; Mackay, C.R.; Lanzavecchia, A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 1997, 277, 2005–2007. [Google Scholar] [CrossRef]
- Pease, J.E. Asthma, allergy and chemokines. Curr. Drug Targets 2006, 7, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, R.; Sabroe, I.; LaRosa, G.; Williams, T.J.; Pease, J.E. The CC chemokine eotaxin (CCL11) is a partial agonist of CC chemokine receptor 2b. J. Biol. Chem. 2001, 276, 42957–42964. [Google Scholar] [CrossRef]
- Ogilvie, P.; Bardi, G.; Clark-Lewis, I.; Baggiolini, M.; Uguccioni, M. Eotaxin is a natural antagonist for CCR2 and an agonist for CCR5. Blood 2001, 97, 1920–1924. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Siciliano, S.J.; Waldburger, K.E.; Sirotina-Meisher, A.; Staruch, M.J.; Daugherty, B.L.; Gould, S.L.; Springer, M.S.; DeMartino, J.A. Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J. Biol. Chem. 1998, 273, 18288–18291. [Google Scholar] [CrossRef] [PubMed]
- Paplińska, M.; Grubek-Jaworska, H.; Chazan, R. Role of eotaxin in the pathophysiology of asthma. Pneumonol. Alergol. Pol. 2007, 75, 180–185. [Google Scholar] [PubMed]
- Lv, J.; Xiong, Y.; Li, W.; Cui, X.; Cheng, X.; Leng, Q.; He, R. IL-37 inhibitsIL-4/IL-13-induced CCL11 production and lung eosinophilia in murine allergic asthma. Allergy 2018, 73, 1642–1652. [Google Scholar] [CrossRef]
- Amerio, P.; Frezzolini, A.; Feliciani, C.; Verdolini, R.; Teofoli, P.; De Pità, O.; Puddu, P. Eotaxins and CCR3 receptor in inflammatory and allergic skin diseases: Therapeutical implications. Curr. Drug Targets Inflamm. Allergy 2003, 2, 81–94. [Google Scholar] [CrossRef]
- Erin, E.M.; Williams, T.J.; Barnes, P.J.; Hansel, T.T. Eotaxin receptor (CCR3) antagonism in asthma and allergic disease. Curr. Drug Targets Inflamm. Allergy 2002, 1, 201–214. [Google Scholar] [CrossRef]
- Lacy, P. Chapter-2 Eosinophil Cytokines in Allergy. Cytokine Eff. Funct. Tissues 2017, 173–218. [Google Scholar] [CrossRef]
- Romagnani, S. Cytokines and chemoattractants in allergic inflammation. Mol. Immunol. 2002, 38, 881–885. [Google Scholar] [CrossRef]
- Garcia, G.; Godot, V.; Humbert, M. New chemokine targets for asthma therapy. Curr. Allergy Asthma Rep. 2005, 5, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Elsner, J.; Escher, S.E.; Forssmann, U. Chemokine receptor antagonists: A novel therapeutic approach in allergic diseases. Allergy 2004, 59, 1243–1258. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.A.; Morofuji, Y.; Owen, J.B.; Banks, W.A. Rapid transport of CCL11 across the blood-brain barrier: Regional variation and importance of blood cells. J. Pharmacol. Exp. 2014, 349, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, M.S.; Wang, X.; Wang, H.; Rafael, C.; Yao, Q.; Chen, C. Eotaxin increases monolayer permeability of human coronary artery endothelial cells. Arter. Thromb. Vasc. Biol. 2009, 29, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Sirivichayakul, S.; Kanchanatawan, B.; Vojdani, A. Breakdown of the paracellular tight and adherens junctions in the gut and blood brain barrier and damage to the vascular barrier in patients with deficit schizophrenia. Neurotox. Res. 2019, 36, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, B.; Horiuchi, H.; Mizuno, T.; Takeuchi, H.; Suzumura, A. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia. Glia 2015, 63, 2274–2284. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, B.; Sun, X.; Zhu, Q.; Sui, Y. Targeting CCR3 to Reduce Amyloid-β Production, Tau Hyperphosphorylation, and Synaptic Loss in a Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2017, 54, 7964–7978. [Google Scholar] [CrossRef]
- Xia, M.Q.; Qin, S.X.; Wu, L.J.; Mackay, C.R.; Hyman, B.T. Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. Am. J. Pathol. 1998, 153, 31–37. [Google Scholar] [CrossRef]
- Hoefer, J.; Luger, M.; Dal-Pont, C.; Culig, Z.; Schennach, H.; Jochberger, S. The "aging factor" eotaxin-1 (ccl11) is detectable in transfusion blood products and increases with the donor’s age. Front. Aging Neurosci. 2017, 9, 402. [Google Scholar] [CrossRef]
- Huber, A.K.; Giles, D.A.; Segal, B.M.; Irani, D.N. An emerging role for eotaxins in neurodegenerative disease. Clin. Immunol. 2018, 189, 29–33. [Google Scholar] [CrossRef]
- Butcher, L.; Pérès, K.; André, P.; Morris, R.H.; Walter, S.; Dartigues, J.-F.; Rodriguez-Mañas, L.; Féart, C.; Erusalimsky, J.D. Association between plasma CCL11 (eotaxin-1) and cognitive status in older adults: Differences between rural and urban dwellers. Exp. Gerontol. 2018, 113, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Meltzer, H.Y.; Buckley, P.; Bosmans, E. Plasma-soluble interleukin-2 and transferrin receptor in schizophrenia and major depression. Eur. Arch. Psychiatry Clin. Neurosci. 1995, 244, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Noto, C.; Ota, V.K.; Gouvea, E.S.; Rizzo, L.B.; Spindola, L.M.; Honda, P.H.; Cordeiro, Q.; Belangero, S.I.; Bressan, R.A.; Gadelha, A.; et al. Effects of risperidone on cytokine profile in drug-naïve first-episode psychosis. Int. J. Neuropsychopharmacol. 2014, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Noto, C.; Ota, V.K.; Santoro, M.L.; Gouvea, E.S.; Silva, P.N.; Spindola, L.M.; Cordeiro, Q.; Bressan, R.A.; Gadelha, A.; Brietzke, E.; et al. Depression, cytokine, and cytokine by treatment interactions modulate gene expression in antipsychotic naïve first episode psychosis. Mol. Neurobiol. 2016, 53, 5701–5709. [Google Scholar] [CrossRef]
- Roomruangwong, C.; Sirivichayakul, S.; Carvalho, A.F.; Maes, M. The uterine-chemokine-brain axis: Menstrual cycle-associated symptoms (mcas) are in part mediated by CCL2, CCL5, CCL11, CXCL8 and CXCL10. Preprints 2019, 2019090329. [Google Scholar] [CrossRef]
- Hong, S.; Lee, E.; Martin, S.; Soontornniyomkij, B.; Soontornniyomkij, V.; Achim, C.L.; Reuter, C.; Irwin, M.R.; Eyler, L.T.; Jeste, D.V. Abnormalities in chemokine levels in schizophrenia and their clinical correlates hhs public access. Schizophr. Res. 2017, 181, 63–69. [Google Scholar] [CrossRef]
- Czepielewski, L.S.; Massuda, R.; Panizzutti, B.; Grun, L.K.; Barbe-Tuana, F.M.; Teixeira, A.L.; Barch, D.M.; Gama, C.S. Telomere length and CCL11 levels are associated with gray matter volume and episodic memory performance in schizophrenia: Evidence of pathological accelerated aging. Schizophr. Bull. 2018, 44, 158–167. [Google Scholar] [CrossRef]
- Noto, C.; Maes, M.; Ota, V.K.; Teixeira, A.L.; Bressan, R.A.; Gadelha, A.; Brietzke, E. High predictive value of immune-inflammatory biomarkers for schizophrenia diagnosis and association with treatment resistance. World J. Biol. Psychiatry 2015, 27, 422–429. [Google Scholar] [CrossRef]
- Frydecka, D.; Krzystek-Korpacka, M.; Lubeiro, A.; Stramecki, F.; Stańczykiewicz, B.; Beszłej, J.; Piotrowski, P.; Kotowicz, K.; Szewczuk-Bogusławska, M.; Pawlak-Adamska, E.; et al. Profiling inflammatory signatures of schizophrenia: A cross-sectional and meta-analysis study. Brain Behav. Immun. 2018, 71, 28–36. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Almulla, A.F.; Maes, M. The neuroimmune and neurotoxic fingerprint of major neurocognitive psychosis or deficit schizophrenia: A supervised machine learning study. Neurotox. Res. 2020, 37, 753–771. [Google Scholar] [CrossRef]
- Al-Dujaili, A.H.; Mousa, R.F.; Al-hakeim, H.K.; Maes, M. High mobility group protein 1 and dickkopf-related protein 1 in schizophrenia and treatment-resistant schizophrenia: Associations with interleukin-6, symptom domains, and neurocognitive impairments. Preprints 2019, 2019120100. [Google Scholar] [CrossRef]
- Teixeira, A.L.; Reis, H.J.; Nicolato, R.; Brito-Melo, G.; Correa, H.; Teixeira, M.M.; Romano-Silva, M.A. Increased serum levels of CCL11/eotaxin in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, P.V.; Jansen, K.; Stertz, L.; Ferrari, P.; Pinheiro, R.T.; da Silva, R.A.; Kapczinski, F. Peripheral eotaxin-1 (CCL11) levels and mood disorder diagnosis in a population-based sample of young adults. J Psychiatr. Res. 2014, 48, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, I.G.; Rocha, N.P.; Bauer, M.E.; De Miranda, A.S.; Huguet, R.B.; Reis, H.J.; Zunszain, P.A.; Horowitz, M.A.; Pariante, C.M.; Teixeira, A.L. Chemokines in bipolar disorder: Trait or state? Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 159–165. [Google Scholar] [CrossRef]
- Ho, P.S.; Yen, C.H.; Chen, C.Y.; Huang, S.Y.; Liang, C.S. Changes in cytokine and chemokine expression distinguish dysthymic disorder from major depression and healthy controls. Psychiatry Res. 2017, 248, 20–27. [Google Scholar] [CrossRef]
- Simon, N.M.; McNamara, K.; Chow, C.W.; Maser, R.S.; Papakostas, G.I.; Pollack, M.H.; Nierenberg, A.A.; Fava, M.; Wong, K.K. A detailed examination of cytokine abnormalities in Major Depressive Disorder. Eur. Neuropsychopharmacol. 2008, 18, 230–233. [Google Scholar] [CrossRef]
- Leighton, S.P.; Nerurkar, L.; Krishnadas, R.; Johnman, C.; Graham, G.J.; Cavanagh, J. Chemokines in depression in health and in inflammatory illness: A systematic review and meta-analysis. Mol. Psychiatry 2018, 23, 48–58. [Google Scholar] [CrossRef]
- Garcıa-Marchena, N.; Barrera, M.; MestrePinto´, J.I.; Araos, P.; Serrano, A.; Pe´rez-Maña´, C.; Papaseit, E.; Alías-Ferri, M.; Ruiz, J.J.; De Fonseca, F.R.; et al. Inflammatory mediators and dual depression: Potential biomarkers in plasma of primary and substance-induced major depression in cocaine and alcohol use disorders. PLoS ONE 2019, 14, e0213791. [Google Scholar] [CrossRef]
- Fontenelle, L.F.; Barbosa, I.G.; Luna, J.V.; De Sousa, L.P.; Abreu, M.N.; Teixeira, A.L. A cytokine study of adult patients with obsessive-compulsive disorder. Compr. Psychiatry 2012, 53, 797–804. [Google Scholar] [CrossRef]
- Ashwood, P.; Wills, S.; Van De Water, J. The immune response in autism: A new frontier for autism research. J. Leukoc. Biol. 2006, 80, 1–5. [Google Scholar] [CrossRef]
- Cunha, G.R.; Asevedo, E.; Mansur, R.B.; Zugman, A.; Pan, P.M.; Gadelha, A.; Belangero, S.I.; Rizzo, L.B.; Coelho, R.; Stertz, L.; et al. Inflammation, neurotrophism and oxidative stress and childhood psychopathology in a large community sample. Acta Psychiatr. Scand. 2015, 134, 569–570. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.; Quintana, D.S.; Glozier, N.; Lloyd, A.R.; Hickie, I.B.; Guastella, A.J. Cytokine aberrations in autism spectrum disorder: A systematic review and meta-analysis. Mol. Psychiatry 2015, 20, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A.W.; Jyonouchi, H.; Comi, A.M.; Connors, S.L.; Milstien, S.; Varsou, A.; Heyes, M.P. Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr. Neurol. 2005, 33, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.; Liu, T.; Tsou, H.; Hsu, Y.; Wang, S.; Fang, C.-P.; Liu, C.-C.; Chen, A.C.; Liu, Y.-L. Inflammatory chemokine eotaxin-1 is correlated with age in heroin dependent patients under methadone maintenance therapy. Drug Alcohol Depend. 2018, 183, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Marchena, N.; Araos, P.F.; Barrios, V.; Sanchez-Marin, L.; Chowen, J.A.; Pedraz, M.; Castilla-Ortega, E.; Romero-Sanchiz, P.; Ponce, G.; Gavito, A.L.; et al. Plasma Chemokines in patients with alcohol use disorders: Association of CCL11 (Eotaxin-1) with psychiatric comorbidity. Front. Psychiatry 2016, 7, 214. [Google Scholar] [CrossRef]
- Scalzo, P.; De Miranda, A.S.; Guerra Amaral, D.C.; De Carvalho Vilela, M.; Cardoso, F.; Teixeira, A.L. Serum levels of chemokines in Parkinson’s disease. NeuroImmunoModulation 2011, 18, 240–244. [Google Scholar] [CrossRef]
- Lindqvist, D.; Hall, S.; Surova, Y.; Nielsen, H.M.; Janelidze, S.; Brundin, L.; Hansson, O. Cerebrospinal fluid inflammatory markers in Parkinson’s disease—Associations with depression, fatigue, and cognitive impairment. Brain Behav. Immun. 2013, 33, 183–189. [Google Scholar] [CrossRef]
- Moghadam-Ahmadi, A.; Khorramdelazad, H.; Hassanshahi, G.; Shahsavari, S.; Moadab, A.; Vakilian, A. Eotaxins and C-C chemokine receptor type 3 in Parkinson’s disease. Acta Neurol. Belg. 2020, 120, 589–594. [Google Scholar] [CrossRef]
- Chandra, G.; Roy, A.; Rangasamy, S.B.; Pahan, K. Induction of adaptive immunity leads to nigrostriatal disease progression in mptp mouse model of parkinson’s disease. J. Immunol. 2017, 198, 4312–4326. [Google Scholar] [CrossRef]
- Lalli, M.A.; Bettcher, B.M.; Arcila, M.L.; Garcia, G.; Guzman, C.; Madrigal, L.; Ramirez, L.; Acosta-Uribe, J.; Baena, A.; Wojta, K.J.; et al. Whole-genome sequencing suggests a chemokine gene cluster that modifies age atonset in familial Alzheimer’s disease. Mol. Psychiatry 2015, 20, 1294–1300. [Google Scholar] [CrossRef]
- Guerreiro, R.; Bras, J. The age factor in Alzheimer’s disease. Genome Med. 2015, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Westin, K.; Buchhave, P.; Nielsen, H.; Minthon, L.; Janciauskiene, S.; Hansson, O. CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS ONE 2012, 7, e30525. [Google Scholar] [CrossRef]
- Hauser, S.L.; Goodwin, D.S. Multiple sclerosis and other demyelinating diseases. Harrison’s Princ. Intern. Med. 17th Ed. 2008, 2611–2621. [Google Scholar]
- Weinshenker, B.G. Epidemiology of multiple sclerosis. Neurol. Clin. 1996, 14, 291–308. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, D.; Wang, L.; Zhao, Y.; Liu, T.; Yu, Y.; Yan, T.; Cheng, Y. Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: A systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front. Neurosci. 2019, 13, 1026. [Google Scholar] [CrossRef] [PubMed]
- Michael, B.D.; Elsone, L.; Griffiths, M.J.; Faragher, B.; Borrow, R.; Solomon, T.; Jacob, A. Post-acute serum eosinophil and neutrophil-associated cytokine/chemokine profile can distinguish between patients with neuromyelitis optica and multiple sclerosis; and identifies potential pathophysiological mechanisms—A pilot study. Cytokine 2013, 64, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Yang, T.; Wang, J.; Zhao, T.; Wang, L.; Kang, Y.; Cheng, C.; Fan, Y. Elevated plasma chemokines for eosinophils in neuromyelitis optica spectrum disorders during remission. Front. Neurol. 2018, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Paredes, L.; Casrouge, A.; Decalf, J.; de Andrés, C.; Villar, L.M.; Pérez de Diego, R.; Alonso, B.; Álvarez Cermeño, J.C.; Arroyo, R.; Tejera-Alhambra, M.; et al. Multimarker risk stratification approach at multiple sclerosis onset. Clin. Immunol. 2017, 181, 43–50. [Google Scholar] [CrossRef]
- Adzemovic, M.Z.; Öckinger, J.; Zeitelhofer, M.; Hochmeister, S.; Beyeen, A.D.; Paulson, A.; Gillett, A.; Thessen Hedreul, M.; Covacu, R.; Lassmann, H.; et al. Expression of Ccl11 associates with immune response modulation and protection against neuroinflammation in rats. PLoS ONE 2012, 7, e39794. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Kuznik, B.I.; Ryzhak, G.A.; Linkova, N.S.; Kozina, L.S.; Sall, T.S. Protein of senility CCL11, “protein of juvenility” GDF11 and their role in age-related pathology. Adv. Gerontol. 2016, 29, 722–731. [Google Scholar]
- Sharma, R.; Macy, S.; Richardson, K.; Lokhnygina, Y.; Laskowitz, D.T. A blood-based biomarker panel to detect acute stroke. J. Stroke Cereb. Dis. 2014, 23, 910–918. [Google Scholar] [CrossRef]
- Roy-O’Reilly, M.; Ritzel, R.M.; Conway, S.E.; Staff, I.; Fortunato, G.; McCullough, L.D. CCL11 (Eotaxin-1) levels predict long-term functional outcomes in patients following ischemic stroke. Transl. Stroke Res. 2017, 8, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Ni, G.; Ma, J.; Liu, H.; Mao, Z.; Sun, H.; Zhang, X. Impact of tag single nucleotide polymorphisms (snps) in ccl11 gene on risk of subtypes of ischemic stroke in xinjiang han populations. Med. Sci. Monit. 2017, 23, 4291–4298. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, X.; Wang, Y.; Liu, X.; Li, J.; Yu, L.; Ma, L.; Wang, S.; Zhang, H.; Liu, L.; et al. Association of inflammatory gene polymorphisms with ischemic stroke in a Chinese Han population. J. Neuroinflammation 2012, 9, 162. [Google Scholar] [CrossRef] [PubMed]
- Munshi, A.; Das, S.; Kaul, S. Genetic determinants in ischaemic stroke subtypes: Seven-year findings and a review. Gene 2015, 555, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.J.; Lin, C.Y.; Hsieh, T.C.; Olson, S.C.; Wu, J.M. Control of eotaxin-1 expression and release by resveratrol and its metabolites in culture human pulmonary artery endothelial cells. Am. J. Cardiovasc. Dis. 2011, 1, 16–30. [Google Scholar] [PubMed]
- Main, S.; Handy, R.; Wilton, J.; Smith, S.; Williams, L.; Fou, L.D.; Andrews, J.; Conroy, L.A.; May, R.; Anderson, I.; et al. A potent human anti-eotaxin1 antibody, CAT-213: Isolation by phage display and in vitro and in vivo efficacy. J. Pharmacol. Exp. Ther. 2006, 319, 1395–1404. [Google Scholar] [CrossRef]
- Garwood, C.J.; Cooper, J.D.; Hanger, D.P.; Noble, W. Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front. Psychiatry 2010, 1, 136. [Google Scholar] [CrossRef]
- Kanabar, V.; Page, C.P.; Simcock, D.E.; Karner, C.; Mahn, K.; O’Connor, B.J.; Hirst, S.J. Heparin and structurally related polymers attenuate eotaxin-1 (CCL11) release from human airway smooth muscle. Br. J. Pharm. 2008, 154, 833–842. [Google Scholar] [CrossRef]
- Jahnsen, F.L.; Haye, R.; Gran, E.; Brandtzaeg, P.; Johansen, F.E. Glucocorticosteroids inhibit mRNA expression for eotaxin, eotaxin-2, and monocyte-chemotactic protein-4 in human airway inflammation with eosinophilia. J. Immunol. 1999, 163, 1545–1551. [Google Scholar]
- Stellato, C.; Collins, P.; Ponath, P.D.; Soler, D.; Newman, W.; La Rosa, G.; Li, H.; White, J.; Schwiebert, L.M.; Bickel, C.; et al. Production of the novel C-C chemokine MCP-4 by airway cells and comparison of its biological activity to other C-C chemokines. J. Clin. Investig. 1997, 99, 926–936. [Google Scholar] [CrossRef]
- Lilly, C.M.; Nakamura, H.; Kesselman, H.; Nagler Anderson, C.; Asano, K.; Garcia Zepeda, E.A.; Rothenberg, M.E.; Drazen, J.M.; Luster, A.D. Expression of eotaxin by human lung epithelial cells: Induction by cytokines and inhibition by glucocorticoids. J. Clin. Investig. 1997, 99, 1767–1773. [Google Scholar] [CrossRef] [PubMed]
- Lezi, E.; Burns, J.M.; Swerdlow, R.H. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol. Aging 2014, 35, 2574–2583. [Google Scholar] [CrossRef]
Cells Producing CCL-11 [8,9,10] |
---|
Eosinophils |
Macrophages |
T and B-cells |
Fibroblasts |
Endothelial cells |
Epithelial cells |
Chondrocytes |
Microglia |
Keratinocytes |
Smooth muscle cells |
Cytokines and Other Molecules Inducing CCL-11 | References |
---|---|
Th-2 cytokines | [8] (Teixeira AL et al., 2018) [9] (Sirivichayakul S et al., 2018) [10] (Kindstedt E et al., 2017) |
Interleukin IL-4 | |
Interleukin IL-10 | |
Interleukin IL-13 | |
Complement factors | |
Immune complexes |
Psychiatric Disorder | Findings for CCL-11 | References |
---|---|---|
Schizophrenia | Increased blood levels; negative correlation with telomere length and grey matter volume; negative correlation with cognitive measures; positive correlation with negative symptoms. | [52] (Teixeira et al., 2008) [47] (Czepielewski et al., 2018) [46] (Hong et al., 2017) [50] (Al-Hakeim et al., 2019) [51] (Al-Dujaili et al., 2019) |
Deficit schizophrenia | Increased plasma CCL-11 levels | [9,11] (Sirivichayakul et al., 2018; 2019) |
Bipolar disorder | Increased blood levels; association with illness stage. | [54] (Barbosa et al., 2013) |
Major depression | Increased blood levels; association with suicidal ideation. | [56] (Simon et al., 2008) |
Dysthymia | Increased blood levels. | [55] (Ho et al., 2017) [53] (Magalhaes et al., 2014) |
Premenstrual syndrome | Increased plasma CCL-11. | [45] (Roomruangwong et al., 2019) |
OCD (Obsessive-Compulsive Disorder) | Blood levels similar to controls. | [59] (Fontenelle et al., 2012) |
Autism spectrum disorder | Increased blood levels; increased CCL-11, IL-6, IL-10 and MCP-3 in the anterior cingulate gyrus in ASD brain specimens. | [60] (Ashwood et al., 2006) [61] (Cunha et al., 2015) [62] (Masi et al., 2015) [63] (Zimmerman et al., 2005) |
Substance abuse disorder | In heroin-dependent subjects, increased blood levels and association with age; in alcohol-dependent subjects, decreased blood levels, especially in women and with comorbid psychiatric disorders. | [64] (Kuo et al., 2018) [65] (Garcia-Marchena et al., 2016) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanovska, M.; Abdi, Z.; Murdjeva, M.; Macedo, D.; Maes, A.; Maes, M. CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals 2020, 13, 230. https://doi.org/10.3390/ph13090230
Ivanovska M, Abdi Z, Murdjeva M, Macedo D, Maes A, Maes M. CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals. 2020; 13(9):230. https://doi.org/10.3390/ph13090230
Chicago/Turabian StyleIvanovska, Mariya, Zakee Abdi, Marianna Murdjeva, Danielle Macedo, Annabel Maes, and Michael Maes. 2020. "CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders" Pharmaceuticals 13, no. 9: 230. https://doi.org/10.3390/ph13090230
APA StyleIvanovska, M., Abdi, Z., Murdjeva, M., Macedo, D., Maes, A., & Maes, M. (2020). CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals, 13(9), 230. https://doi.org/10.3390/ph13090230