Metabolic Stability of New Mito-Protective Short-Chain Naphthoquinones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Solutions, and Cells
2.2. RP-LC Instrumentation
2.3. Metabolic Stability Study
2.3.1. Cell Culture
2.3.2. Cell Culture System Development
2.3.3. Sample Preparation
2.3.4. RP-LC Gradient Optimization and Analytical Performance
2.4. Statistical Analysis
3. Results and Discussion
3.1. Superior Metabolic Stability of UTAS SCQs
3.2. Increased Metabolic Stability by Carbon Chain Extension
3.3. Natural Enantiomer as a Prodrug Alternative
3.4. Metabolically Stable UTAS SCQ as an Alternative for Polytherapy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sasi, U.S.S.; Sindhu, G.; Raj, P.S.; Raghu, K.G. Mitochondria Associated Membranes (MAMs): Emerging drug targets for diabetes. Curr. Med. Chem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Fex, M.; Nicholas, L.M.; Vishnu, N.; Medina, A.; Sharoyko, V.V.; Nicholls, D.G.; Spegel, P.; Mulder, H. The pathogenetic role of beta-cell mitochondria in type 2 diabetes. J. Endocrinol. 2018, 236, R145–R159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flemming, N.B.; Gallo, L.A.; Ward, M.S.; Forbes, J.M. Tapping into Mitochondria to Find Novel Targets for Diabetes Complications. Curr. Drug Targets 2016, 17, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Gueven, N.; Woolley, K.; Smith, J. Border between natural product and drug: Comparison of the related benzoquinones idebenone and coenzyme Q10. Redox Biol. 2015, 4, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erb, M.; Hoffmann-Enger, B.; Deppe, H.; Soeberdt, M.; Haefeli, R.H.; Rummey, C.; Feurer, A.; Gueven, N. Features of idebenone and related short-chain quinones that rescue ATP levels under conditions of impaired mitochondrial complex I. PLoS ONE 2012, 7, e36153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haefeli, R.H.; Erb, M.; Gemperli, A.C.; Robay, D.; Courdier Fruh, I.; Anklin, C.; Dallmann, R.; Gueven, N. NQO1-dependent redox cycling of idebenone: Effects on cellular redox potential and energy levels. PLoS ONE 2011, 6, e17963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klopstock, T.; Yu-Wai-Man, P.; Dimitriadis, K.; Rouleau, J.; Heck, S.; Bailie, M.; Atawan, A.; Chattopadhyay, S.; Schubert, M.; Garip, A.; et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 2011, 134, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, G.; Dimitriadis, K.; Buchner, B.; Heck, S.; Al-Tamami, J.; Seidensticker, F.; Rummey, C.; Leinonen, M.; Meier, T.; Klopstock, T. Effects of idebenone on color vision in patients with leber hereditary optic neuropathy. J. Neuroophthalmol. 2013, 33, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klopstock, T.; Metz, G.; Yu-Wai-Man, P.; Buchner, B.; Gallenmuller, C.; Bailie, M.; Nwali, N.; Griffiths, P.G.; von Livonius, B.; Reznicek, L.; et al. Persistence of the treatment effect of idebenone in Leber’s hereditary optic neuropathy. Brain 2013, 136, e230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomilov, A.; Allen, S.; Hui, C.K.; Bettaieb, A.; Cortopassi, G. Idebenone is a cytoprotective insulin sensitizer whose mechanism is Shc inhibition. Pharmacol. Res. 2018, 137, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Woolley, K.L.; Nadikudi, M.; Koupaei, M.N.; Corban, M.; McCartney, P.; Bissember, A.C.; Lewis, T.W.; Gueven, N.; Smith, J.A. Amide linked redox-active naphthoquinones for the treatment of mitochondrial dysfunction. MedChemComm 2019, 10, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Rudzok, S.; Schlink, U.; Herbarth, O.; Bauer, M. Measuring and modeling of binary mixture effects of pharmaceuticals and nickel on cell viability/cytotoxicity in the human hepatoma derived cell line HepG2. Toxicol. Appl. Pharmacol. 2010, 244, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Gerets, H.H.J.; Tilmant, K.; Gerin, B.; Chanteux, H.; Depelchin, B.O.; Dhalluin, S.; Atienzar, F.A. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 2012, 28, 69–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, Y.; Sasaki, Y.; Terasaki, N.; Kawataki, T.; Takekawa, K.; Iwase, Y.; Shimizu, T.; Sanoh, S.; Ohta, S. Comparison of Drug Metabolism and Its Related Hepatotoxic Effects in HepaRG, Cryopreserved Human Hepatocytes, and HepG2 Cell Cultures. Biol. Pharm. Bull. 2018, 41, 722–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodmer, M.; Vankan, P.; Dreier, M.; Kutz, K.W.; Drewe, J. Pharmacokinetics and metabolism of idebenone in healthy male subjects. Eur. J. Clin. Pharmacol. 2009, 65, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Kutz, K.; Drewe, J.; Vankan, P. Pharmacokinetic properties and metabolism of idebenone. J. Neurol. 2009, 256 (Suppl. S1), 31–35. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.; Bray-French, K.; Drewe, J. Pharmacokinetic evaluation of idebenone. Expert Opin. Drug Metab. Toxicol. 2010, 6, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Di Prospero, N.A.; Sumner, C.J.; Penzak, S.R.; Ravina, B.; Fischbeck, K.H.; Taylor, J.P. Safety, tolerability, and pharmacokinetics of high-dose idebenone in patients with Friedreich ataxia. Arch. Neurol. 2007, 64, 803–808. [Google Scholar] [CrossRef] [PubMed]
Compound | ID | Structure | n | R | Formula | Molecular Weight (g mol−1) | LogP 1 | LogD 2 | In vitro Cytoprotection (%) 3 |
---|---|---|---|---|---|---|---|---|---|
Idebenone | C19H30O5 | 338.4 | 1.24 | 3.57 | 66.2 ± 12.0 | ||||
1 | UTAS#81 | 2 | C23H23NO4 | 377.4 | 2.24 | 2.81 | 83.8 ± 19.9 | ||
2 | UTAS#80 | C23H23NO4 | 377.4 | 2.24 | 2.81 | 87.6 ± 19.7 | |||
3 | UTAS#62 | C24H25NO4 | 391.5 | 2.52 | 3.10 | 93.1 ± 13.7 | |||
4 | UTAS#78 | C24H25NO4 | 391.5 | 2.52 | 3.10 | 80.0 ± 21.1 | |||
5 | UTAS#37 | 2 | C24H23NO5 | 405.4 | 2.48 | 0.12 | 100.3 ± 17.3 | ||
6 | UTAS#72 | 3 | C25H25NO5 | 419.5 | 2.90 | 0.74 | 90.7 ± 15.6 | ||
7 | UTAS#74 | 2 | C23H23NO4 | 377.4 | 2.67 | 3.43 | 91.7 ± 15.6 | ||
8 | UTAS#88 | 3 | C24H25NO4 | 391.5 | 3.09 | 3.87 | 91.8 ± 9.8 | ||
9 | UTAS#89 | 4 | C25H27NO4 | 405.5 | 3.50 | 4.31 | 85.2 ± 9.5 | ||
10 | UTAS#54 | 2 | C21H25NO5 | 371.4 | 2.04 | 0.26 | 98.7 ± 10.9 | ||
11 | UTAS#77 | C25H27NO5 | 421.5 | 2.80 | 3.41 | 95.9 ± 19.4 | |||
12 | UTAS#91 | C19H23NO3 | 313.4 | 2.29 | 3.04 | 82.0 ± 7.1 | |||
13 | UTAS#95 | C24H23NO5 | 405.4 | 2.46 | 3.28 | 86.1 ± 5.0 | |||
14 | UTAS#61 | C20H23NO4 | 341.4 | 1.06 | 1.71 | 100.7 ± 28.4 | |||
15 | UTAS#43 | C20H21NO5 | 355.4 | 1.02 | −1.32 | 92.7 ± 7.6 | |||
16 | UTAS#46 | C14H12O4S | 276.3 | 0.74 | −1.43 | 80.5 ± 11.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Smith, J.A.; Gueven, N.; Quirino, J.P. Metabolic Stability of New Mito-Protective Short-Chain Naphthoquinones. Pharmaceuticals 2020, 13, 29. https://doi.org/10.3390/ph13020029
Feng Z, Smith JA, Gueven N, Quirino JP. Metabolic Stability of New Mito-Protective Short-Chain Naphthoquinones. Pharmaceuticals. 2020; 13(2):29. https://doi.org/10.3390/ph13020029
Chicago/Turabian StyleFeng, Zikai, Jason A. Smith, Nuri Gueven, and Joselito P. Quirino. 2020. "Metabolic Stability of New Mito-Protective Short-Chain Naphthoquinones" Pharmaceuticals 13, no. 2: 29. https://doi.org/10.3390/ph13020029
APA StyleFeng, Z., Smith, J. A., Gueven, N., & Quirino, J. P. (2020). Metabolic Stability of New Mito-Protective Short-Chain Naphthoquinones. Pharmaceuticals, 13(2), 29. https://doi.org/10.3390/ph13020029