Anti-stress Properties of Atypical Antipsychotics
Abstract
:1. Introduction: Stress and Mental Illness
2. Molecular Mechanisms of the Stress Response
2.1. Monoamines
2.2. Glutamate and γ-aminobutyric Acid
2.3. Hypothalamic-Pituitary-Adrenal Axis and Glucocorticoids
2.4. Neuronal Plasticity
2.5. Inflammation
3. Stress Exposure and Schizophrenia
3.1. Clinical and Epidemiological Evidence
3.2. Preclinical Studies and Animal Models
4. Mechanism of Action of Atypical Antipsychotics
5. Atypical Antipsychotic Drugs and Stress-Related Mechanisms
5.1. Preclinical Studies
Stress Model | Protocol | Major Changes | Effects of AAPD Treatment |
---|---|---|---|
Prenatal stress (PNS) | Pregnant dams are exposed to repeated immobility sessions in a plastic tube (usually during the last week of gestation) |
|
|
Post-weaning social isolation (PWSI) | Animals are reared in isolation during the peripubertal phase. They are kept in the same room but are prevented from physical contacts with conspecifics |
| |
Chronic mild stress (CMS) | Animals are exposed to different mild stressors presented in unpredictable sequences |
5.2. Clinical Evidence
Domains | Stress-Induced Alterations | Main Effects of AAPD Treatment | Molecules |
---|---|---|---|
HPA axis | Increased cortisol levels [9,149] | Reduction of cortisol levels [151,152,153,160] | Clozapine, olanzapine, risperidone |
Neuroplasticity | Reduction of BDNF, reduced hippocampal volume [78,161] | Normalization of BDNF levels [161,167], NGF and Neurotrophin 3 [168] Positive effects on brain volume [162,163,164] | Risperidone, clozapine, lurasidone, olanzapine |
Inflammation | Increase baseline levels of IL-1β and TNF-α [161] | Normalization of IL-1β and increased TNF-α serum levels [161] | Risperidone |
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McEwen, B.S. Physiology and Neurobiology of Stress and Adaptation: Central Role of the Brain. Physiol. Rev. 2007, 87, 873–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, F.; Segovia, G.; Del Arco, A.; De Blas, M.; Garrido, P. Stress, neurotransmitters, corticosterone and body–brain integration. Brain Res. 2012, 1476, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. A Syndrome produced by Diverse Nocuous Agents. Nat. Cell Biol. 1936, 138, 32. [Google Scholar] [CrossRef]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of Stress Throughout the Lifespan on the Brain, Behaviour and Cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef]
- Berry, A.; Panetta, P.; Luoni, A.; Bellisario, V.; Capoccia, S.; Riva, M.A.; Cirulli, F. Decreased Bdnf Expression and Reduced Social Behavior in Periadolescent Rats Following Prenatal Stress. Dev. Psychobiol. 2015, 57, 365–373. [Google Scholar] [CrossRef]
- Andersen, S.L. Trajectories of Brain Development: Point of Vulnerability or Window of Opportunity? Neurosci. Biobehav. Rev. 2003, 27, 3–18. [Google Scholar] [CrossRef] [Green Version]
- De Kloet, E.R.; Sibug, R.M.; Helmerhorst, F.M.; Schmidt, M.V. Stress, Genes and the Mechanism of Programming the Brain for Later Life. Neurosci. Biobehav. Rev. 2005, 29, 271–281. [Google Scholar] [CrossRef]
- Wied, C.C.G.-D. Stress in Schizophrenia: An Integrative View. Eur. J. Pharmacol. 2000, 405, 375–384. [Google Scholar] [CrossRef]
- Walker, E.F.; Diforio, D. Schizophrenia: A Neural Diathesis-Stress Model. Psychol. Rev. 1997, 104, 667–685. [Google Scholar] [CrossRef] [Green Version]
- Hammen, C. Stress and Depression. Annu. Rev. Clin. Psychol. 2005, 1, 293–319. [Google Scholar] [CrossRef] [Green Version]
- Joëls, M.; Baram, T.Z. The Neuro-Symphony of Stress. Nat. Rev. Neurosci. 2009, 10, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Joëls, M.; Karst, H.; Krugers, H.J.; Lucassen, P.J. Chronic Stress: Implications for Neuronal Morphology, Function and Neurogenesis. Front. Neuroendocrinol. 2007, 28, 72–96. [Google Scholar] [CrossRef] [PubMed]
- Aston-Jones, G.; Cohen, J.D. An Integrative Theory of Locus Coeruleus-Norepinephrine Function: Adaptive Gain and Optimal Performance. Annu. Rev. Neurosci. 2005, 28, 403–450. [Google Scholar] [CrossRef] [Green Version]
- Goto, Y.; Otani, S.; Grace, A.A. The Yin and Yang of Dopamine Release: A New Perspective. Neuropharmacology 2007, 53, 583–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamec, R.E.; Holmes, A.; Blundell, J. Vulnerability to Lasting Anxiogenic Effects of Brief Exposure to Predator Stimuli: Sex, Serotonin and Other Factors—Relevance to PTSD. Neurosci. Biobehav. Rev. 2008, 32, 1287–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adell, A.; Garcia-Marquez, C.; Armario, A.; Gelpí, E. Chronic Stress Increases Serotonin and Noradrenaline in Rat Brain and Sensitizes Their Responses to a Further Acute Stress. J. Neurochem. 1988, 50, 1678–1681. [Google Scholar] [CrossRef] [PubMed]
- Watt, M.J.; Burke, A.R.; Renner, K.J.; Forster, G.L. Adolescent Male Rats Exposed to Social Defeat Exhibit Altered Anxiety Behavior and Limbic Monoamines as Adults. Behav. Neurosci. 2009, 123, 564–576. [Google Scholar] [CrossRef] [Green Version]
- Watt, M.J.; Roberts, C.L.; Scholl, J.L.; Meyer, D.L.; Miiller, L.C.; Barr, J.L.; Novick, A.M.; Renner, K.J.; Forster, G.L. Decreased Prefrontal Cortex Dopamine Activity Following Adolescent Social Defeat in Male Rats: Role of Dopamine D2 Receptors. Psychopharmacology 2013, 231, 1627–1636. [Google Scholar] [CrossRef]
- Wright, L.D.; Hébert, K.E.; Perrot-Sinal, T.S. Periadolescent Stress Exposure Exerts Long-Term Effects on Adult Stress Responding and Expression of Prefrontal Dopamine Receptors in Male and Female Rats. Psychoneuroendocrinology 2008, 33, 130–142. [Google Scholar] [CrossRef]
- Novick, A.M.; Forster, G.L.; Hassell, J.E.; Davies, D.R.; Scholl, J.L.; Renner, K.J.; Watt, M.J. Increased Dopamine Transporter Function as a Mechanism for Dopamine Hypoactivity in the Adult Infralimbic Medial Prefrontal Cortex Following Adolescent Social Stress. Neuropharmacology 2015, 97, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Novick, A.M.; Forster, G.L.; Tejani-Butt, S.M.; Watt, M.J. Adolescent Social Defeat Alters Markers of Adult Dopaminergic Function. Brain Res. Bull. 2011, 86, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnsten, A.F.T. Stress Signalling Pathways That Impair Prefrontal Cortex Structure and Function. Nat. Rev. Neurosci. 2009, 10, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Fogaça, M.V.; Duman, R.S. Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Front. Cell. Neurosci. 2019, 13, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lener, M.S.; Niciu, M.J.; Ballard, E.D.; Park, M.; Park, L.T.; Nugent, A.C.; Zarate, C.A. Glutamate and Gamma-Aminobutyric Acid Systems in the Pathophysiology of Major Depression and Antidepressant Response to Ketamine. Biol. Psychiatry 2017, 81, 886–897. [Google Scholar] [CrossRef] [Green Version]
- Page, C.E.; Coutellier, L. Prefrontal Excitatory/Inhibitory Balance in Stress and Emotional Disorders: Evidence for Over-Inhibition. Neurosci. Biobehav. Rev. 2019, 105, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Lowy, M.T.; Wittenberg, L.; Yamamoto, B.K. Effect of Acute Stress on Hippocampal Glutamate Levels and Spectrin Proteolysis in Young and Aged Rats. J. Neurochem. 1995, 65, 268–274. [Google Scholar] [CrossRef]
- Musazzi, L.; Milanese, M.; Farisello, P.; Zappettini, S.; Tardito, D.; Barbiero, V.S.; Bonifacino, T.; Mallei, A.; Baldelli, P.; Racagni, G.; et al. Acute Stress Increases Depolarization-Evoked Glutamate Release in the Rat Prefrontal/Frontal Cortex: The Dampening Action of Antidepressants. PLoS ONE 2010, 5, e8566. [Google Scholar] [CrossRef]
- Yuen, E.Y.; Liu, W.; Karatsoreos, I.N.; Ren, Y.; Feng, J.; McEwen, B.S.; Yan, Z. Mechanisms for Acute Stress-Induced Enhancement of Glutamatergic Transmission and Working Memory. Mol. Psychiatry 2010, 16, 156–170. [Google Scholar] [CrossRef] [Green Version]
- Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The Stressed Synapse: The Impact of Stress and Glucocorticoids on Glutamate Transmission. Nat. Rev. Neurosci. 2011, 13, 22–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrón-Oyarzo, I.; Aboitiz, F.; Fuentealba, P. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders. Neural Plast. 2016, 2016, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, G.; Cullinan, W.E.; Herman, J.P. Region-Specific Regulation of Glutamic Acid Decarboxylase (GAD) mRNA Expression in Central Stress Circuits. J. Neurosci. 1998, 18, 5938–5947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banasr, M.; Lepack, A.; Fee, C.; Duric, V.; Maldonado-Aviles, J.; Dileone, R.; Sibille, E.; Duman, R.S.; Sanacora, G. Characterization of GABAergic Marker Expression in the Chronic Unpredictable Stress Model of Depression. Chronic Stress 2017, 1, 247054701772045. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Xu, A.; Cui, S.; Sun, M.-R.; Xue, Y.-C.; Wang, J.-H. Impaired GABA Synthesis, Uptake and Release Are Associated With Depression-Like Behaviors Induced by Chronic Mild Stress. Transl. Psychiatry 2016, 6, e910. [Google Scholar] [CrossRef]
- McKlveen, J.M.; Morano, R.L.; Fitzgerald, M.; Zoubovsky, S.; Cassella, S.N.; Scheimann, J.R.; Ghosal, S.; Mahbod, P.; Packard, B.A.; Myers, B.; et al. Chronic Stress Increases Prefrontal Inhibition: A Mechanism for Stress-Induced Prefrontal Dysfunction. Biol. Psychiatry 2016, 80, 754–764. [Google Scholar] [CrossRef] [Green Version]
- Gilabert-Juan, J.; Castillo-Gomez, E.; Guirado, R.; Moltó, M.D.; Nacher, J. Chronic Stress Alters Inhibitory Networks in the Medial Prefrontal Cortex of Adult Mice. Brain Struct. Funct. 2012, 218, 1591–1605. [Google Scholar] [CrossRef] [PubMed]
- Czéh, B.; Varga, Z.K.K.; Henningsen, K.; Kovács, G.L.; Miseta, A.; Wiborg, O. Chronic Stress Reduces the Number of GABAergic Interneurons in the Adult Rat Hippocampus, Dorsal-Ventral and Region-Specific Differences. Hippocampus 2014, 25, 393–405. [Google Scholar] [CrossRef]
- Filipović, D.; Zlatkovic, J.; Gass, P.; Inta, D. The Differential Effects of Acute vs. Chronic Stress and Their Combination on Hippocampal Parvalbumin and Inducible Heat Shock Protein 70 Expression. Neuroscience 2013, 236, 47–54. [Google Scholar] [CrossRef]
- Rossetti, A.C.; Paladini, M.S.; Colombo, M.; Gruca, P.; Lason-Tyburkiewicz, M.; Tota-Glowczyk, K.; Papp, M.; Riva, M.A.; Molteni, R. Chronic Stress Exposure Reduces Parvalbumin Expression in the Rat Hippocampus through an Imbalance of Redox Mechanisms: Restorative Effect of the Antipsychotic Lurasidone. Int. J. Neuropsychopharmacol. 2018, 21, 883–893. [Google Scholar] [CrossRef]
- Cattaneo, A.; Riva, M. Stress-Induced Mechanisms in Mental Illness: A Role for Glucocorticoid Signalling. J. Steroid Biochem. Mol. Biol. 2016, 160, 169–174. [Google Scholar] [CrossRef] [PubMed]
- De Kloet, E.R. Brain Corticosteroid Receptor Balance in Health and Disease. Endocr. Rev. 1998, 19, 269–301. [Google Scholar] [CrossRef]
- Myers, B.; McKlveen, J.M.; Herman, J.P. Neural Regulation of the Stress Response: The Many Faces of Feedback. Cell. Mol. Neurobiol. 2012, 32, 683–694. [Google Scholar] [CrossRef]
- McEwen, B.S. Protective and Damaging Effects of Stress Mediators. N. Engl. J. Med. 1998, 338, 171–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pariante, C.M. Risk Factors for Development of Depression and Psychosis. Ann. N. Y. Acad. Sci. 2009, 1179, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.F.; Mittal, V.; Tessner, K. Stress and the Hypothalamic Pituitary Adrenal Axis in the Developmental Course of Schizophrenia. Annu. Rev. Clin. Psychol. 2008, 4, 189–216. [Google Scholar] [CrossRef]
- Anacker, C.; Zunszain, P.A.; Carvalho, L.A.; Pariante, C.M. The Glucocorticoid Receptor: Pivot of Depression and of Antidepressant Treatment? Psychoneuroendocrinology 2011, 36, 415–425. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S.; Gianaros, P.J. Stress-and Allostasis-Induced Brain Plasticity. Annu. Rev. Med. 2011, 62, 431–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapolsky, R.M. Stress and the Brain: Individual Variability and the Inverted-U. Nat. Neurosci. 2015, 18, 1344–1346. [Google Scholar] [CrossRef]
- Calabrese, F.; Molteni, R.; Racagni, G.; Riva, M.A. Neuronal Plasticity: A Link between Stress and Mood Disorders. Psychoneuroendocrinology 2009, 34, S208–S216. [Google Scholar] [CrossRef]
- Huang, T.L. Effects of Antipsychotics on the BDNF in Schizophrenia. Curr. Med. Chem. 2013, 20, 345–350. [Google Scholar] [CrossRef]
- Begni, V.; Riva, M.A.; Cattaneo, A. Cellular and Molecular Mechanisms of the Brain-Derived Neurotrophic Factor in Physiological and Pathological Conditions. Clin. Sci. 2016, 131, 123–138. [Google Scholar] [CrossRef]
- Leal, G.; Comprido, D.; Duarte, C.B. BDNF- Induced Local Protein Synthesis and Synaptic Plasticity. Neuropharmacology 2014, 76, 639–656. [Google Scholar] [CrossRef] [Green Version]
- Bramham, C.R.; Messaoudi, E. BDNF Function in Adult Synaptic Plasticity: The Synaptic Consolidation Hypothesis. Prog. Neurobiol. 2005, 76, 99–125. [Google Scholar] [CrossRef] [PubMed]
- García-Bueno, B.; Caso, J.R.; Leza, J.C. Stress as a Neuroinflammatory Condition in Brain: Damaging and Protective Mechanisms. Neurosci. Biobehav. Rev. 2008, 32, 1136–1151. [Google Scholar] [CrossRef] [PubMed]
- Katsuura, G.; Gottschall, P.E.; Dahl, R.R.; Arimura, A. Adrenocorticotropin Release Induced by Intracerebroventricular Injection of Recombinant Human Interleukin-1 in Rats: Possible Involvement of Prostaglandin. Endocrinology 1988, 122, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Slavich, G.M.; Irwin, M.R. From Stress to Inflammation and Major Depressive Disorder: A Social Signal Transduction Theory of Depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef]
- Barrientos, R.M.; O’Reilly, R.C.; Higgins, E.; Sprunger, D.B.; Watkins, L.R.; Rudy, J.W.; Maier, S.F. Memory for Context Is Impaired by a Post Context Exposure Injection of Interleukin-1 Beta Into Dorsal Hippocampus. Behav. Brain Res. 2002, 134, 291–298. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Maes, M. The Role of the Cytokine Network in Psychological Stress. Acta Neuropsychiatr. 2003, 15, 148–155. [Google Scholar] [CrossRef]
- Elenkov, I.J.; Chrousos, G.P. Stress, Cytokine Patterns and Susceptibility to Disease. Best Pract. Res. Clin. Endocrinol. Metab. 1999, 13, 583–595. [Google Scholar] [CrossRef]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Bergh, B.R.V.D.; Mulder, E.J.; Mennes, M.; Glover, V. Antenatal Maternal Anxiety and Stress and the Neurobehavioural Development of the Fetus and Child: Links and Possible Mechanisms. A Review. Neurosci. Biobehav. Rev. 2005, 29, 237–258. [Google Scholar] [CrossRef]
- Class, Q.A.; Abel, K.; Khashan, A.S.; Rickert, M.E.; Dalman, C.; Larsson, H.; Hultman, C.M.; Långström, N.; Lichtenstein, P.; D’Onofrio, B.M. Offspring Psychopathology Following Preconception, Prenatal and Postnatal Maternal Bereavement Stress. Psychol. Med. 2013, 44, 71–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khashan, A.S.; Abel, K.; McNamee, R.; Pedersen, M.G.; Webb, R.T.; Baker, P.N.; Kenny, L.C.; Mortensen, P.B. Higher Risk of Offspring Schizophrenia Following Antenatal Maternal Exposure to Severe Adverse Life Events. Arch. Gen. Psychiatry 2008, 65, 146–152. [Google Scholar] [CrossRef]
- Bergh, B.R.V.D.; Heuvel, M.I.V.D.; Lahti, J.; Braeken, M.; De Rooij, S.R.; Entringer, S.; Hoyer, D.; Roseboom, T.; Räikkönen, K.; King, S.; et al. Prenatal Developmental Origins of Behavior and Mental Health: The Influence of Maternal Stress in Pregnancy. Neurosci. Biobehav. Rev. 2017. [Google Scholar] [CrossRef] [Green Version]
- Welberg, L.; Seckl, J.; Holmes, M. Prenatal Glucocorticoid Programming of Brain Corticosteroid Receptors and Corticotrophin-Releasing Hormone: Possible Implications for Behaviour. Neuroscience 2001, 104, 71–79. [Google Scholar] [CrossRef]
- Popovic, D.; Schmitt, A.; Kaurani, L.; Senner, F.; Papiol, S.; Malchow, B.; Fischer, A.; Schulze, T.G.; Koutsouleris, N.; Falkai, P. Childhood Trauma in Schizophrenia: Current Findings and Research Perspectives. Front. Neurosci. 2019, 13, 274. [Google Scholar] [CrossRef] [Green Version]
- Varese, F.; Smeets, F.; Drukker, M.; Lieverse, R.; Lataster, T.; Viechtbauer, W.; Read, J.; Van Os, J.; Bentall, R.P. Childhood Adversities Increase the Risk of Psychosis: A Meta-analysis of Patient-Control, Prospective- and Cross-sectional Cohort Studies. Schizophr. Bull. 2012, 38, 661–671. [Google Scholar] [CrossRef]
- Larsson, S.; Andreassen, O.A.; Aas, M.; Røssberg, J.I.; Mork, E.; Steen, N.E.; Barrett, E.A.; Lagerberg, T.V.; Peleikis, D.; Agartz, I.; et al. High Prevalence of Childhood Trauma in Patients with Schizophrenia Spectrum and Affective Disorder. Compr. Psychiatry 2013, 54, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Cancel, A.; Comte, M.; Truillet, R.; Boukezzi, S.; Rousseau, P.-F.; Zendjidjian, X.Y.; Sage, T.; Lazerges, P.-E.; Guedj, E.; Khalfa, S.; et al. Childhood Neglect Predicts Disorganization in Schizophrenia Through Grey Matter Decrease in Dorsolateral Prefrontal Cortex. Acta Psychiatr. Scand. 2015, 132, 244–256. [Google Scholar] [CrossRef]
- Shannon, C.; Douse, K.; McCusker, C.; Feeney, L.; Barrett, S.; Mulholland, C. The Association Between Childhood Trauma and Memory Functioning in Schizophrenia. Schizophr. Bull. 2009, 37, 531–537. [Google Scholar] [CrossRef]
- Aas, M.; Steen, N.E.; Agartz, I.; Aminoff, S.R.; Lorentzen, S.; Sundet, K.; Andreassen, O.A.; Melle, I. Is Cognitive Impairment Following Early Life Stress in Severe Mental Disorders Based on Specific or General Cognitive Functioning? Psychiatry Res. 2012, 198, 495–500. [Google Scholar] [CrossRef]
- Walker, E.F.; Diforio, D.; Baum, K. Developmental Neuropathology and the Precursors of Schizophrenia. Acta Psychiatr. Scand. 1999, 99, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, M.L.; Mavrolefteros, G.; Turnbull, A. Premorbid Factors in Relation to Motor, Memory, and Executive Functions Deficits in Adult Schizophrenia. Schizophr. Res. 2003, 61, 271–280. [Google Scholar] [CrossRef]
- Jablensky, A. Prevalence and Incidence of Schizophrenia Spectrum Disorders: Implications for Prevention. Aust. N. Z. J. Psychiatry 2000, 34, S26–S34. [Google Scholar] [CrossRef] [PubMed]
- Tessner, K.D.; Mittal, V.; Walker, E.F. Longitudinal Study of Stressful Life Events and Daily Stressors Among Adolescents at High Risk for Psychotic Disorders. Schizophr. Bull. 2009, 37, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Walsh, P.; Spelman, L.; Sharifi, N.; Thakore, J.H. Male Patients With Paranoid Schizophrenia Have Greater Acth and Cortisol Secretion in Response to Metoclopramide-Induced Avp Release. Psychoneuroendocrinology 2005, 30, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Perlman, W.R.; Webster, M.J.; Kleinman, J.E.; Weickert, C.S. Reduced Glucocorticoid and Estrogen Receptor Alpha Messenger Ribonucleic Acid Levels in the Amygdala of Patients with Major Mental Illness. Biol. Psychiatry 2004, 56, 844–852. [Google Scholar] [CrossRef]
- Corcoran, C.; Walker, E.; Huot, R.; Mittal, V.; Tessner, K.; Kestler, L.; Malaspina, D. The Stress Cascade and Schizophrenia: Etiology and Onset. Schizophr. Bull. 2003, 29, 671–692. [Google Scholar] [CrossRef] [Green Version]
- Geuze, E.; Vermetten, E.; Bremner, J.D. MR- Based in Vivo Hippocampal Volumetrics: Findings in Neuropsychiatric Disorders. Mol. Psychiatry 2004, 10, 160–184. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, A.; Begni, V.; Malpighi, C.; Cattane, N.; Luoni, A.; Pariante, C.; Riva, M.A. Transcriptional Signatures of Cognitive Impairment in Rat Exposed to Prenatal Stress. Mol. Neurobiol. 2019, 56, 6251–6260. [Google Scholar] [CrossRef]
- Fumagalli, F.; Molteni, R.; Racagni, G.; Riva, M. Stress during Development: Impact on Neuroplasticity and Relevance to Psychopathology. Prog. Neurobiol. 2007, 81, 197–217. [Google Scholar] [CrossRef]
- Richetto, J.; Riva, M.A. Prenatal Maternal Factors in the Development of Cognitive Impairments in the Offspring. J. Reprod. Immunol. 2014, 104, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Q.; Wang, Y.; Hu, J.; Jiang, H.; Cheng, W.; Ma, Y.; Liu, M.; Sun, A.; Zhang, X.; et al. Duloxetine Prevents the Effects of Prenatal Stress on Depressive-Like and Anxiety-Like Behavior and Hippocampal Expression of Pro-Inflammatory Cytokines in Adult Male Offspring Rats. Int. J. Dev. Neurosci. 2016, 55, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Alonso, S.; Arévalo, R.; Afonso, D.; Rodríguez, M. Effects of Maternal Stress during Pregnancy on Forced Swimming Test Behavior of the Offspring. Physiol. Behav. 1991, 50, 511–517. [Google Scholar] [CrossRef]
- Keshet, G. Maternal Naltrexone Prevents Morphological and Behavioral Alterations Induced in Rats by Prenatal Stress. Pharmacol. Biochem. Behav. 1995, 50, 413–419. [Google Scholar] [CrossRef]
- Fumagalli, F.; Bedogni, F.; Perez, J.; Racagni, G.; Riva, M.A. Corticostriatal Brain-Derived Neurotrophic Factor Dysregulation in Adult Rats Following Prenatal Stress. Eur. J. Neurosci. 2004, 20, 1348–1354. [Google Scholar] [CrossRef]
- Luoni, A.; Berry, A.; Raggi, C.; Bellisario, V.; Cirulli, F.; Riva, M.A. Sex-Specific Effects of Prenatal Stress on Bdnf Expression in Response to an Acute Challenge in Rats: A Role for Gadd45β. Mol. Neurobiol. 2015, 53, 7037–7047. [Google Scholar] [CrossRef]
- Luoni, A.; Berry, A.; Calabrese, F.; Capoccia, S.; Bellisario, V.; Gass, P.; Cirulli, F.; Riva, M.A. Delayed BDNF Alterations in the Prefrontal Cortex of Rats Exposed to Prenatal Stress: Preventive Effect of Lurasidone Treatment During Adolescence. Eur. Neuropsychopharmacol. 2014, 24, 986–995. [Google Scholar] [CrossRef]
- Berger, M.A.; Barros, V.G.; Sarchi, M.I.; Tarazi, F.I.; Antonelli, M.C. Long-Term Effects of Prenatal Stress on Dopamine and Glutamate Receptors in Adult Rat Brain. Neurochem. Res. 2002, 27, 1525–1533. [Google Scholar] [CrossRef]
- Zhang, H.; Shang, Y.; Xiao, X.; Yu, M.; Zhang, T. Prenatal Stress-Induced Impairments of Cognitive Flexibility and Bidirectional Synaptic Plasticity Are Possibly Associated With Autophagy in Adolescent Male-Offspring. Exp. Neurol. 2017, 298, 68–78. [Google Scholar] [CrossRef]
- Holloway, T.; Moreno, J.L.; Umali, A.; Rayannavar, V.; Hodes, G.E.; Russo, S.J.; González-Maeso, J. Prenatal Stress Induces Schizophrenia-Like Alterations of Serotonin 2A and Metabotropic Glutamate 2 Receptors in the Adult Offspring: Role of Maternal Immune System. J. Neurosci. 2013, 33, 1088–1098. [Google Scholar] [CrossRef]
- Fumagalli, F.; Pasini, M.; Frasca, A.; Drago, F.; Racagni, G.; Riva, M.A. Prenatal Stress Alters Glutamatergic System Responsiveness in Adult Rat Prefrontal Cortex. J. Neurochem. 2009, 109, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Huizink, A.C.; Mulder, E.J.H.; Buitelaar, J.K. Prenatal Stress and Risk for Psychopathology: Specific Effects or Induction of General Susceptibility? Psychol. Bull. 2004, 130, 115–142. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Furukawa, T.; Iwata, S.; Yanagawa, Y.; Fukuda, A. Selective Loss of Parvalbumin-Positive GABAergic Interneurons in the Cerebral Cortex of Maternally Stressed gad1-Heterozygous Mouse Offspring. Transl. Psychiatry 2014, 4, e371. [Google Scholar] [CrossRef] [Green Version]
- Stevens, H.E.; Su, T.; Yanagawa, Y.; Vaccarino, F.M. Prenatal Stress Delays Inhibitory Neuron Progenitor Migration in the Developing Neocortex. Psychoneuroendocrinology 2012, 38, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Maccari, S.; Darnaudery, M.; Morley-Fletcher, S.; Zuena, A.; Cinque, C.; Van Reeth, O. Prenatal Stress and Long-Term Consequences: Implications of Glucocorticoid Hormones. Neurosci. Biobehav. Rev. 2003, 27, 119–127. [Google Scholar] [CrossRef]
- Maccari, S.; Morley-Fletcher, S. Effects of Prenatal Restraint Stress on the Hypothalamus–Pituitary–Adrenal Axis and Related Behavioural and Neurobiological Alterations. Psychoneuroendocrinology 2007, 32, S10–S15. [Google Scholar] [CrossRef]
- Anacker, C.; Cattaneo, A.; Luoni, A.; Musaelyan, K.A.; Zunszain, P.; Milanesi, E.; Rybka, J.; Berry, A.; Cirulli, F.; Thuret, S.; et al. Glucocorticoid-Related Molecular Signaling Pathways Regulating Hippocampal Neurogenesis. Neuropsychopharmacology 2012, 38, 872–883. [Google Scholar] [CrossRef]
- Anacker, C.; Cattaneo, A.; Musaelyan, K.; Zunszain, P.A.; Horowitz, M.A.; Molteni, R.; Luoni, A.; Calabrese, F.; Tansey, K.E.; Gennarelli, M.; et al. Role for the Kinase SGK1 in Stress, Depression, and Glucocorticoid Effects on Hippocampal Neurogenesis. Proc. Natl. Acad. Sci. USA 2013, 110, 8708–8713. [Google Scholar] [CrossRef] [Green Version]
- Spear, L. The Adolescent Brain and Age-Related Behavioral Manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463. [Google Scholar] [CrossRef]
- Gomes, F.V.; Grace, A.A. Prefrontal Cortex Dysfunction Increases Susceptibility to Schizophrenia-Like Changes Induced by Adolescent Stress Exposure. Schizophr. Bull. 2016, 43, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Heidbreder, C.A.; Weiss, I.C.; Domeney, A.M.; Pryce, C.; Homberg, J.; Hedou, G.; Feldon, J.; Moran, M.C.; Nelson, P. Behavioral, Neurochemical and Endocrinological Characterization of the Early Social Isolation Syndrome. Neuroscience 2000, 100, 749–768. [Google Scholar] [CrossRef]
- Fone, K.C.; Porkess, M.V. Behavioural and Neurochemical Effects of Post-Weaning Social Isolation in Rodents—Relevance to Developmental Neuropsychiatric Disorders. Neurosci. Biobehav. Rev. 2008, 32, 1087–1102. [Google Scholar] [CrossRef] [PubMed]
- Lomanowska, A.M.; Ammari, N.; Kraemer, G.W. Interactions Between the Effects of Early Isolation Rearing and Complex Housing on Adult Locomotor Activity and Sensitivity to Amphetamine in Rats Involve Noradrenergic Neurotransmission. Pharmacol. Biochem. Behav. 2010, 95, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Brake, W.G.; Zhang, T.-Y.; Diorio, J.; Meaney, M.J.; Gratton, A. Influence of Early Postnatal Rearing Conditions on Mesocorticolimbic Dopamine and Behavioural Responses to Psychostimulants and Stressors in Adult Rats. Eur. J. Neurosci. 2004, 19, 1863–1874. [Google Scholar] [CrossRef] [PubMed]
- Begni, V.; Zampar, S.; Longo, L.; Riva, M.A. Sex Differences in the Enduring Effects of Social Deprivation during Adolescence in Rats: Implications for Psychiatric Disorders. Neuroscience 2020, 437, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Pisu, M.G.; Dore, R.; Mostallino, M.C.; Loi, M.; Pibiri, F.; Mameli, R.; Cadeddu, R.; Secci, P.P.; Serra, M. Down-Regulation of Hippocampal BDNF and Arc Associated with Improvement in Aversive Spatial Memory Performance in Socially Isolated Rats. Behav. Brain Res. 2011, 222, 73–80. [Google Scholar] [CrossRef]
- Geyer, M.A.; Krebs-Thomson, K.; Braff, D.L.; Swerdlow, N.R. Pharmacological Studies of Prepulse Inhibition Models of Sensorimotor Gating Deficits in SchizophreniA: A Decade in Review. Psychopharmacology 2001, 156, 117–154. [Google Scholar] [CrossRef]
- Bianchi, M.; Fone, K.C.F.; Azmi, N.; Heidbreder, C.A.; Hagan, J.J.; Marsden, C.A. Isolation Rearing Induces Recognition Memory Deficits Accompanied by Cytoskeletal Alterations in Rat Hippocampus. Eur. J. Neurosci. 2006, 24, 2894–2902. [Google Scholar] [CrossRef]
- Boero, G.; Pisu, M.G.; Biggio, F.; Muredda, L.; Carta, G.; Banni, S.; Paci, E.; Follesa, P.; Concas, A.; Porcu, P.; et al. Impaired Glucocorticoid-Mediated HPA Axis Negative Feedback Induced by Juvenile Social Isolation in Male Rats. Neuropharmacology 2018, 133, 242–253. [Google Scholar] [CrossRef]
- Rossetti, A.C.; Papp, M.; Gruca, P.; Paladini, M.S.; Racagni, G.; Riva, M.A.; Molteni, R. Stress-Induced Anhedonia Is Associated with the Activation of the Inflammatory System in the Rat Brain: Restorative Effect of Pharmacological Intervention. Pharmacol. Res. 2016, 103, 1–12. [Google Scholar] [CrossRef]
- Calabrese, F.; Brivio, P.; Gruca, P.; Lason-Tyburkiewicz, M.; Papp, M.; Riva, M.A. Chronic Mild Stress-Induced Alterations of Local Protein Synthesis: A Role for Cognitive Impairment. ACS Chem. Neurosci. 2017, 8, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Papp, M.; Gruca, P.; Lason-Tyburkiewicz, M.; Litwa, E.; Niemczyk, M.; Tota-Glowczyk, K.; Willner, P. Dopaminergic Mechanisms in Memory Consolidation and Antidepressant Reversal of a Chronic Mild Stress-Induced Cognitive Impairment. Psychopharmacology 2017, 234, 2571–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrese, F.; Brivio, P.; Sbrini, G.; Gruca, P.; Lason, M.; Litwa, E.; Niemczyk, M.; Papp, M.; Riva, M.A. Effect of Lurasidone Treatment on Chronic Mild Stress-Induced Behavioural Deficits in Male Rats: The Potential Role for Glucocorticoid Receptor Signalling. J. Psychopharmacol. 2020, 34, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Luoni, A.; Macchi, F.; Papp, M.; Molteni, R.; Riva, M.A. Lurasidone Exerts Antidepressant Properties in the Chronic Mild Stress Model through the Regulation of Synaptic and Neuroplastic Mechanisms in the Rat Prefrontal Cortex. Int. J. Neuropsychopharmacol. 2015, 18, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltzer, H.Y. Update on Typical and Atypical Antipsychotic Drugs. Annu. Rev. Med. 2013, 64, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Aringhieri, S.; Carli, M.; Kolachalam, S.; Verdesca, V.; Cini, E.; Rossi, M.; McCormick, P.J.; Corsini, G.U.; Maggio, R.; Scarselli, M. Molecular Targets of Atypical Antipsychotics: From Mechanism of Action to Clinical Differences. Pharmacol. Ther. 2018, 192, 20–41. [Google Scholar] [CrossRef]
- Horacek, J.; Bubeníková, V.; Kopecek, M.; Palenicek, T.; Dockery, C.; Mohr, P.; Höschl, C. Mechanism of Action of Atypical Antipsychotic Drugs and the Neurobiology of Schizophrenia. CNS Drugs 2006, 20, 389–409. [Google Scholar] [CrossRef]
- Millan, M.J. N-Methyl-D-Aspartate Receptors as a Target for Improved Antipsychotic Agents: Novel Insights and Clinical Perspectives. Psychopharmacology 2005, 179, 30–53. [Google Scholar] [CrossRef]
- Heresco-Levy, U. Glutamatergic Neurotransmission Modulation and the Mechanisms of Antipsychotic Atypicality. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2003, 27, 1113–1123. [Google Scholar] [CrossRef]
- Orsolini, L.; Tomasetti, C.; Valchera, A.; Vecchiotti, R.; Matarazzo, I.; Vellante, F.; Iasevoli, F.; Buonaguro, E.F.; Fornaro, M.; Fiengo, A.L.C.; et al. An Update of Safety of Clinically Used Atypical Antipsychotics. Expert Opin. Drug Saf. 2016, 15, 1329–1347. [Google Scholar] [CrossRef]
- Orsolini, L.; De Berardis, D.; Volpe, U. Up-to-Date Expert Opinion on the Safety of Recently Developed Antipsychotics. Expert Opin. Drug Saf. 2020, 19, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, F.; Calabrese, F.; Luoni, A.; Bolis, F.; Racagni, G.; Riva, M. Modulation of BDNF Expression by Repeated Treatment with the Novel Antipsychotic Lurasidone under Basal Condition and in Response to Acute Stress. Int. J. Neuropsychopharmacol. 2011, 15, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Marchisella, F.; Paladini, M.S.; Guidi, A.; Begni, V.; Brivio, P.; Spero, V.; Calabrese, F.; Molteni, R.; Riva, M.A. Chronic Treatment With the Antipsychotic Drug Blonanserin Modulates the Responsiveness to Acute Stress With Anatomical Selectivity. Psychopharmacology 2020, 237, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Matrisciano, F.; Tueting, P.; Dalal, I.; Kadriu, B.; Grayson, D.R.; Davis, J.M.; Nicoletti, F.; Guidotti, A. Epigenetic Modifications of GABAergic Interneurons Are Associated With the Schizophrenia-Like Phenotype Induced by Prenatal Stress in Mice. Neuropharmacology 2013, 68, 184–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, E.; Tueting, P.; Matrisciano, F.; Grayson, D.R.; Guidotti, A. Behavioral and Molecular Neuroepigenetic Alterations in Prenatally Stressed Mice: Relevance for the Study of Chromatin Remodeling Properties of Antipsychotic Drugs. Transl. Psychiatry 2016, 6, e711. [Google Scholar] [CrossRef] [PubMed]
- Llorente-Berzal, Á.; Mela, V.; Borcel, E.; Valero, M.; López-Gallardo, M.; Viveros, M.-P.; Marco, E.M. Neurobehavioral and Metabolic Long-Term Consequences of Neonatal Maternal Deprivation Stress and Adolescent Olanzapine Treatment in Male and Female Rats. Neuropharmacology 2012, 62, 1332–1341. [Google Scholar] [CrossRef]
- Furuse, K.; Ukai, W.; Hashimoto, E.; Hashiguchi, H.; Kigawa, Y.; Ishii, T.; Tayama, M.; Deriha, K.; Shiraishi, M.; Kawanishi, C. Antidepressant Activities of Escitalopram and Blonanserin on Prenatal and Adolescent Combined Stress-Induced Depression Model: Possible Role of Neurotrophic Mechanism Change in Serum and Nucleus Accumbens. J. Affect. Disord. 2019, 247, 97–104. [Google Scholar] [CrossRef]
- McIntosh, A.L.; Ballard, T.M.; Steward, L.J.; Moran, P.M.; Fone, K.C.F. The Atypical Antipsychotic Risperidone Reverses the Recognition Memory Deficits Induced by Post-Weaning Social Isolation in Rats. Psychopharmacology 2013, 228, 31–42. [Google Scholar] [CrossRef]
- Bakshi, V.P.; Swerdlow, N.R.; Braff, D.L.; Geyer, M.A. Reversal of Isolation Rearing-Induced Deficits in Prepulse Inhibition by Seroquel and Olanzapine. Biol. Psychiatry 1998, 43, 436–445. [Google Scholar] [CrossRef]
- Möller, M.; Du Preez, J.L.; Emsley, R.; Harvey, B.H. Isolation Rearing-Induced Deficits in Sensorimotor Gating and Social Interaction in Rats Are Related to Cortico-Striatal Oxidative Stress, and Reversed by Sub-Chronic Clozapine Administration. Eur. Neuropsychopharmacol. 2011, 21, 471–483. [Google Scholar] [CrossRef]
- Ko, C.-Y.; Liu, Y.-P. Disruptions of Sensorimotor Gating, Cytokines, Glycemia, Monoamines, and Genes in Both Sexes of Rats Reared in Social Isolation Can Be Ameliorated by Oral Chronic Quetiapine Administration. Brain Behav. Immun. 2016, 51, 119–130. [Google Scholar] [CrossRef]
- Stanisavljevic, A.; Perić, I.; Gass, P.; Inta, D.; Lang, U.E.; Borgwardt, S.; Filipović, D. Brain Sub/Region-Specific Effects of Olanzapine on c-Fos Expression of Chronically Socially Isolated Rats. Neuroscience 2019, 396, 46–65. [Google Scholar] [CrossRef]
- Filipović, D.; Stanisavljevic, A.; Jasnic, N.; Bernardi, R.E.; Inta, A.; Perić, I.; Gass, P. Chronic Treatment with Fluoxetine or Clozapine of Socially Isolated Rats Prevents Subsector-Specific Reduction of Parvalbumin Immunoreactive Cells in the Hippocampus. Neuroscience 2018, 371, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Papp, M.; Gruca, P.; Lasoń-Tyburkiewicz, M.; Adham, N.; Kiss, B.; Gyertyán, I. Attenuation of Anhedonia by Cariprazine in the Chronic Mild Stress Model of Depression. Behav. Pharmacol. 2014, 25, 567–574. [Google Scholar] [CrossRef]
- Orsetti, M.; Colella, L.; Dellarole, A.; Canonico, P.L.; Ferri, S.; Ghi, P. Effects of Chronic Administration of Olanzapine, Amitriptyline, Haloperidol or Sodium Valproate in Naive and Anhedonic Rats. Int. J. Neuropsychopharmacol. 2005, 9, 427–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsetti, M.; Colella, L.; Dellarole, A.; Ghi, P.; Canonico, P.L. Modification of Spatial Recognition Memory and Object Discrimination After Chronic Administration of Haloperidol, Amitriptyline, Sodium Valproate or Olanzapine in Normal and Anhedonic Rats. Int. J. Neuropsychopharmacol. 2006, 10, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutlu, O.; Gumuslu, E.; Ulak, G.; Celikyurt, I.K.; Kokturk, S.; Kır, H.M.; Akar, F.; Erden, F.; Kir, H.M. Effects of Fluoxetine, Tianeptine and Olanzapine on Unpredictable Chronic Mild Stress-Induced Depression-Like Behavior in Mice. Life Sci. 2012, 91, 1252–1262. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.L.; Jiang, P.; Tan, Q.Y.; Dang, R.L.; Tang, M.M.; Xue, Y.; Deng, Y.; Zhang, B.K.; Fang, P.F.; Xu, P.; et al. Therapeutic Efficacy of Atypical Antipsychotic Drugs by Targeting Multiple Stress-Related Metabolic Pathways. Transl. Psychiatry 2017, 7, e1130. [Google Scholar] [CrossRef] [Green Version]
- Gumuslu, E.; Mutlu, O.; Sunnetci, D.; Ulak, G.; Celikyurt, I.; Çine, N.; Akar, F. The Effects of Tianeptine, Olanzapine and Fluoxetine on the Cognitive Behaviors of Unpredictable Chronic Mild Stress-exposed Mice. Drug Res. 2013, 63, 532–539. [Google Scholar] [CrossRef]
- Lewis, D.A.; Hashimoto, T.; Volk, D.W. Cortical Inhibitory Neurons and Schizophrenia. Nat. Rev. Neurosci. 2005, 6, 312–324. [Google Scholar] [CrossRef]
- Möhler, H. The GABA System in Anxiety and Depression and Its Therapeutic Potential. Neuropharmacology 2012, 62, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.C.C.; Tsai, S.-J. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int. J. Mol. Sci. 2017, 18, 1689. [Google Scholar] [CrossRef] [PubMed]
- MacDowell, K.S.; Caso, J.R.; Martín-Hernandez, D.; Moreno, B.M.; Madrigal, J.L.M.; Micó, J.A.; Leza, J.C.; Garcia-Bueno, B. The Atypical Antipsychotic Paliperidone Regulates Endogenous Antioxidant/Anti-Inflammatory Pathways in Rat Models of Acute and Chronic Restraint Stress. Neurotherapeutics 2016, 13, 833–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-W.; Choi, S.M.; Lee, J.G.; Lee, C.H.; Lee, S.J.; Kim, N.R.; Kim, Y.H. Differential Effects of Ziprasidone and Haloperidol on Immobilization-Stress-Induced CRF mRNA Expression in the Hypothalamic Paraventricular Nucleus of Rats. Neuropsychobiology 2011, 63, 29–34. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Garabadu, D.; Reddy, N.R.; Joy, K.P. Risperidone in Ultra Low Dose Protects Against Stress in the Rodent Cold Restraint Model by Modulating Stress Pathways. Neurochem. Res. 2011, 36, 1750–1758. [Google Scholar] [CrossRef]
- Park, S.W.; Lee, C.H.; Lee, J.G.; Lee, S.J.; Kim, N.R.; Choi, S.M.; Kim, Y.H. Differential Effects of Ziprasidone and Haloperidol on Immobilization Stress-Induced mRNA BDNF Expression in the Hippocampus and Neocortex of Rats. J. Psychiatr. Res. 2009, 43, 274–281. [Google Scholar] [CrossRef]
- Xu, H.; Qing, H.; Lu, W.; Keegan, D.; Richardson, J.; Chlan-Fourney, J.; Li, X.-M. Quetiapine Attenuates the Immobilization Stress-Induced Decrease of Brain-Derived Neurotrophic Factor Expression in Rat Hippocampus. Neurosci. Lett. 2002, 321, 65–68. [Google Scholar] [CrossRef]
- Luo, C.; Xu, H.; Li, X.-M. Quetiapine Reverses the Suppression of Hippocampal Neurogenesis Caused by Repeated Restraint Stress. Brain Res. 2005, 1063, 32–39. [Google Scholar] [CrossRef]
- Meltzer, H.Y.; Lee, M.A.; Jayathilake, K. The Blunted Plasma Cortisol Response to Apomorphine and Its Relationship to Treatment Response in Patients with Schizophrenia. Neuropsychopharmacology 2001, 24, 278–290. [Google Scholar] [CrossRef] [Green Version]
- Altamura, A.; Boin, F.; Maes, M. HPA Axis and Cytokines Dysregulation in Schizophrenia: Potential Implications for the Antipsychotic Treatment. Eur. Neuropsychopharmacol. 1999, 10, 1–4. [Google Scholar] [CrossRef]
- Hatzimanolis, J.; Lykouras, L.; Markianos, M.; Oulis, P. Neurochemical Variables in Schizophrenic Patients during Switching From Neuroleptics to Clozapine. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1998, 22, 1077–1085. [Google Scholar] [CrossRef]
- Meltzer, H.Y. Clinical Studies on the Mechanism of Action of Clozapine: The Dopamine-Serotonin Hypothesis of Schizophrenia. Psychopharmacology 1989, 99, S18–S27. [Google Scholar] [CrossRef]
- Scheepers, F.E.; De Wied, C.C.G.; Kahn, R.S. The Effect of Olanzapine Treatment on M-Chlorophenylpiperazine-Induced Hormone Release in Schizophrenia. J. Clin. Psychopharmacol. 2001, 21, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Breier, A.; Buchanan, R.W.; Waltrip, R.W.; Listwak, S.; Holmes, C.; Goldstein, D.S. The Effect of Clozapine on Plasma Norepinephrine: Relationship to Clinical Efficacy. Neuropsychopharmacology 1994, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cohrs, S.; Röher, C.; Jordan, W.; Meier, A.; Huether, G.; Wuttke, W.; Rüther, E.; Rodenbeck, A. The Atypical Antipsychotics Olanzapine and Quetiapine, but Not Haloperidol, Reduce Acth and Cortisol Secretion in Healthy Subjects. Psychopharmacology 2006, 185, 11–18. [Google Scholar] [CrossRef]
- Conley, R.R.; Mahmoud, R. A Randomized Double-Blind Study of Risperidone and Olanzapine in the Treatment of Schizophrenia or Schizoaffective Disorder. Am. J. Psychiatry 2001, 158, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, H.Y.; Alphs, L.; Green, A.I.; Altamura, A.C.; Anand, R.; Bertoldi, A.; Bourgeois, M.; Chouinard, G.; Islam, M.Z.; Kane, J.; et al. Clozapine Treatment for Suicidality in SchizophreniaInternational Suicide Prevention Trial (InterSePT). Arch. Gen. Psychiatry 2003, 60, 82–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tollefson, G.D.; Sanger, T.M.; Lu, Y.; Thieme, M.E. Depressive Signs and Symptoms in Schizophrenia. Arch. Gen. Psychiatry 1998, 55, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Sajatovic, M.; Mullen, J.A.; Sweitzer, D.E. Efficacy of Quetiapine and Risperidone against Depressive Symptoms in Outpatients with Psychosis. J. Clin. Psychiatry 2002, 63, 1156–1163. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhou, D.F.; Cao, L.Y.; Wu, G.Y.; Shen, Y.C. Cortisol and Cytokines in Chronic and Treatment-Resistant Patients with Schizophrenia: Association with Psychopathology and Response to Antipsychotics. Neuropsychopharmacology 2005, 30, 1532–1538. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-L.; Lee, S.-Y.; Chang, Y.-H.; Chen, S.-H.; Chu, C.-H.; Tzeng, N.-S.; Lee, I.-H.; Chen, P.-S.; Yeh, T.L.; Huang, S.-Y.; et al. Inflammation in Patients with Schizophrenia: The Therapeutic Benefits of Risperidone Plus Add-On Dextromethorphan. J. Neuroimmune Pharmacol. 2012, 7, 656–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vita, A.; De Peri, L.; Deste, G.; Barlati, S.; Sacchetti, E. The Effect of Antipsychotic Treatment on Cortical Gray Matter Changes in Schizophrenia: Does the Class Matter? A Meta-analysis and Meta-regression of Longitudinal Magnetic Resonance Imaging Studies. Biol. Psychiatry 2015, 78, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.; Tollefson, G.D.; Charles, C.; Zipursky, R.; Sharma, T.; Kahn, R.S.E.; Keefe, R.S.; Green, A.I.; Gur, R.E.; McEvoy, J.; et al. Antipsychotic Drug Effects on Brain Morphology in First-Episode Psychosis. Arch. Gen. Psychiatry 2005, 62, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.T.; Nasrallah, H.A. Neuroprotective Effects of the Second Generation Antipsychotics. Schizophr. Res. 2019, 208, 1–7. [Google Scholar] [CrossRef]
- Luo, C.; Lencer, R.; Hu, N.; Xiao, Y.; Zhang, W.; Li, S.; Lui, S.; Gong, Q. Characteristics of White Matter Structural Networks in Chronic Schizophrenia Treated With Clozapine or Risperidone and Those Never Treated. Int. J. Neuropsychopharmacol. 2020. [Google Scholar] [CrossRef]
- Okugawa, G.; Nobuhara, K.; Takase, K.; Saito, Y.; Yoshimura, M.; Kinoshita, T. Olanzapine Increases Grey and White Matter Volumes in the Caudate Nucleus of Patients with Schizophrenia. Neuropsychobiology 2007, 55, 43–46. [Google Scholar] [CrossRef]
- Pedrini, M.; Chendo, I.; Grande, I.; Lobato, M.I.; De Abreu, P.B.; Lersch, C.; Walz, J.C.; Kauer-Sant’Anna, M.; Kapczinski, F.; Gama, C.S. Serum Brain-Derived Neurotrophic Factor and Clozapine Daily Dose in Patients With Schizophrenia: A Positive Correlation. Neurosci. Lett. 2011, 491, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Jena, M.; Ranjan, R.; Mishra, B.R.; Mishra, A.; Nath, S.; Sahu, P.; Meher, B.R.; Srinivasan, A.; Maiti, R.; Nath, S. Effect of Lurasidone vs Olanzapine on Neurotrophic Biomarkers in Unmedicated Schizophrenia: A Randomized Controlled Trial. J. Psychiatr. Res. 2019, 112, 1–6. [Google Scholar] [CrossRef]
- Li, J.; Yoshikawa, A.; Brennan, M.D.; Ramsey, T.L.; Meltzer, H.Y. Genetic Predictors of Antipsychotic Response to Lurasidone Identified in a Genome Wide Association Study and by Schizophrenia Risk Genes. Schizophr. Res. 2018, 192, 194–204. [Google Scholar] [CrossRef]
- Leucht, S.; Barnes, T.R.E.; Kissling, W.; Engel, R.R.; Correll, D.C.; Kane, J.M. Relapse Prevention in Schizophrenia with New-Generation Antipsychotics: A Systematic Review and Exploratory Meta-Analysis of Randomized, Controlled Trials. Am. J. Psychiatry 2003, 160, 1209–1222. [Google Scholar] [CrossRef]
- Kane, J.M. Treatment Strategies to Prevent Relapse and Encourage Remission. J. Clin. Psychiatry 2007, 68, 27–30. [Google Scholar] [PubMed]
- Lally, J.; Gaughran, F.; Timms, P.; Curran, S. Treatment-Resistant SchizophreniA: Current Insights on the Pharmacogenomics of Antipsychotics. Pharm. Pers. Med. 2016, 9, 117–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanson, A.; Riva, M.A. Anti-stress Properties of Atypical Antipsychotics. Pharmaceuticals 2020, 13, 322. https://doi.org/10.3390/ph13100322
Sanson A, Riva MA. Anti-stress Properties of Atypical Antipsychotics. Pharmaceuticals. 2020; 13(10):322. https://doi.org/10.3390/ph13100322
Chicago/Turabian StyleSanson, Alice, and Marco A. Riva. 2020. "Anti-stress Properties of Atypical Antipsychotics" Pharmaceuticals 13, no. 10: 322. https://doi.org/10.3390/ph13100322
APA StyleSanson, A., & Riva, M. A. (2020). Anti-stress Properties of Atypical Antipsychotics. Pharmaceuticals, 13(10), 322. https://doi.org/10.3390/ph13100322