Medicinal Plants to Strengthen Immunity during a Pandemic
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alschuler, L.; Weil, A.; Horwitz, R.; Stamets, P.; Chiasson, A.M.; Crocker, R.; Maizes, V. Integrative considerations during the COVID-19 pandemic. Explore 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Pooladanda, V.; Thatikonda, S.; Godugu, C. The current understanding and potential therapeutic options to combat COVID-19. Life Sci. 2020, 117765. [Google Scholar] [CrossRef] [PubMed]
- Vellingiri, B.; Jayaramayy, K.; Iyer, M.; Narayanasamy, A.; Govindasamy, V.; Giridharane, B.; Ganesan, S.; Venugopal, A.; Venkatesan, D.; Ganesan, H.; et al. COVID-19: A promising cure for the global panic. Sci. Total Environ. 2020, 725, 138277. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- WHO. Novel Coronavirus (2019-nCoV) Advice for the Public. 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 25 April 2020).
- WHO. Global Epidemiological Surveillance Standards for Influenza. 2014. Available online: https://www.who.int/influenza/resources/documents/WHO_Epidemiological_Influenza_Surveillance_Standards_2014.pdf?ua=1 (accessed on 25 April 2020).
- Zhang, D.-H.; Wu, K.-L.; Zhang, X.; Deng, S.-Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med. 2020, 18, 152–158. [Google Scholar] [CrossRef]
- Mukhtarad, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Res. 2008, 131, 111–120. [Google Scholar] [CrossRef]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Chen, Z.; Nakamura, T. Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS. Phytother. Res. 2004, 18, 592–594. [Google Scholar] [CrossRef]
- Roy, M.; Liang, L.; Xiao, X.; Feng, P.; Ye, M.; Liu, J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed. Pharmacother. 2018, 107, 615–624. [Google Scholar] [CrossRef]
- Luo, H.; Tang, Q.L.; Shang, Y.X.; Liang, S.-B.; Yang, M.; Robinson, N.; Liu, J.-P. Can Chinese medicine be used for prevention of Corona Virus Disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin. J. Integr. Med. 2020, 26, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Ling, C.-Q. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). J. Integr. Med. 2020, 18, 87–88. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Guan, Q.; Tan, Y.; Hou, L.; Xie, W. Medical Plants and Immunological Regulation. J. Immunol. Res. 2018, 2018, 9172096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.-F.; Lu, R.-J.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, G.R.; Silva Vasconcelos, A.B.; Haran, G.H.; da Silva Calisto, V.K.; Jothi, G.; de Souza Siqueira Quintans, J.; Cuevas, L.E.; Narain, N.; Quintans Júnior, L.J.; Cipolotti, R.; et al. Essential oils and its bioactive compounds modulating cytokines: A systematic review on anti-asthmatic and immunomodulatory properties. Phytomedicine 2020, 73, 152854. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Fu-RongXu, F.-R.; Wang, Y.-Z. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. J. Ethnopharmacol. 2020, 263, 112792. [Google Scholar] [CrossRef] [PubMed]
- Chavan, R.D.; Shinde, P.; Girkar, K.; Madage, R.; Chowdhary, A. Assessment of Anti-Influenza activity and hemagglutination inhibition of Plumbago indica and Allium sativum extracts. Phcog. Res. 2016, 8, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzun, M.; Kaya, A. Ethnobotanical research of medicinal plants in Mihalgazi (Eskişehir, Turkey). J. Pharm. Biol. 2016, 54, 1194863. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.-N.; Yu, J.; Xiao, P.-G.; et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir. Res. 2005, 67, 18–23. [Google Scholar] [CrossRef]
- Lin, L.-T.; Hsu, W.-C.; Lin, C.-C. Antiviral Natural Products and Herbal Medicines. J. Tradit. Complement. Med. 2014, 4, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Nair, J.J.; Wilhelm, A.; Bonnet, S.L.; van Staden, J. Antibacterial constituents of the plant family Amaryllidaceae. Bioorg. Med. Chem. Lett. 2017, 27, 4943–4951. [Google Scholar] [CrossRef]
- Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Amaryllidaceae alkaloids: Absolute configuration and biological activity. Chirality 2017, 29, 486–499. [Google Scholar] [CrossRef]
- Nair, J.J.; van Staden, J. Antifungal constituents of the plant family Amaryllidaceae. Phytother. Res. 2018, 32, 976–984. [Google Scholar] [CrossRef]
- Hulcova, D.; Breiterova, K.; Siatka, T.; Klimova, K.; Davani, L.; Safratova, M.; Hostalkova, A.; de Simone, A.; Andrisano, V.; Cahlikova, L. Amaryllidaceae alkaloids as potential glycogen synthase Kinase-3beta inhibitors. Molecules 2018, 23, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Qi, W.B.; Wang, L.; Tian, J.; Jiao, P.R.; Liu, G.Q.; Ye, W.C.; Liao, M. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza Other Respir. Viruses 2013, 7, 922–931. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.J.; Schmiech, M.; Hafner, S.; Paetz, C.; Steinborn, C.; Huber, R.; El Gaafarya, M.; Werner, K.; Schmidt, C.Q.; Syrovets, T.; et al. Antitumor activity of an Artemisia annua herbal preparation and identification of active ingredients. Phytomedicine. 2019, 62, 152962. [Google Scholar] [CrossRef]
- Slezakova, S.; Ruda-Kucerova, J. Anticancer activity of artemisinin and its derivatives. Anticancer Res. 2017, 37, 5995–6003. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Ni, F.; Song, Y.; Wang, S.; Huang, W.; Wang, Z.; Xiao, W. Chemical constituents from Artemisia annua. China J. Chin. Mater. Med. 2014, 39, 4816–4821. [Google Scholar]
- Fu, C.; Yu, P.; Wang, M.; Qiu, F. Phytochemical analysis and geographic assessment of flavonoids, coumarins and sesquiterpenes in Artemisia annua L. based on HPLC-DAD quantification and LC-ESI-QTOF-MS/MS confirmation. Food Chem. 2020, 312, 126070. [Google Scholar] [CrossRef]
- Li, K.M.; Dong, X.; Ma, Y.N.; Wu, Z.H.; Yan, Y.M.; Cheng, Y.X. Antifungal coumarins and lignans from Artemisia annua. Fitoterapia 2019, 134, 323–328. [Google Scholar] [CrossRef]
- Ko, Y.S.; Lee, W.S.; Panchanathan, R.; Joo, Y.N.; Choi, Y.H.; Kim, G.S.; Jung, J.-M.; Ryu, C.H.; Shin, S.C.; Kim, H.J. Polyphenols from Artemisia annua L inhibit adhesion and EMT of highly metastatic breast cancer cells MDA-MB-231. Phytother. Res. 2016, 30, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Desta, K.T.; Kim, G.-S.; Lee, S.J.; Lee, W.S.; Kim, Y.H.; Jin, J.S.; Abd El-Aty, A.M.; Shin, H.-C.; Shim, J.-H.; et al. Polyphenolic profile and antioxidant effects of various parts of Artemisia annua L. Biomed. Chromatogr. 2016, 30, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Guo, Y.; Yang, Q.; Weng, X.-G.; Yang, L.; Wang, Y.-J.; Chen, Y.; Zhang, D.; Li, Q.; Liu, X.-C.; et al. Flavonoids casticin and chrysosplenol D from Artemisia annua L. inhibit inflammation in vitro and in vivo. Toxicol. Appl. Pharmacol. 2015, 286, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S. Casticin alleviates lipopolysaccharide-induced inflammatory responses and expression of mucus and extracellular matrix in human airway epithelial cells through Nrf2/Keap1 and NF-kappaB pathways. Phytother. Res. 2018, 32, 1346–1353. [Google Scholar] [CrossRef]
- Proteggente, A.R.; Pannala, A.S.; Paganga, G.; Buren, L.V.; Wagner, E.; Wiseman, S.; Put, F.V.D.; Dacombe, C.; Rice-Evans, C.A. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic. Res. 2002, 36, 217–233. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.H.; Cao, J.G.; Wang, Q.X.; Xiao, J.B. Flavonoids, antioxidant potential, and acetylcholinesterase inhibition activity of the extracts from the gametophyte and archegoniophore of Marchantia polymorpha L. Molecules 2016, 21, 360. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, M.; Cao, J.; Wu, Y.; Xiao, J.; Wanga, Q. Analysis of flavonoids and antioxidants in extracts of ferns from Tianmu Mountain in Zhejiang Province (China). Ind. Crops Prod. 2017, 97, 137–145. [Google Scholar] [CrossRef]
- Yu, M.; Lee, S.J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.-S.; Jeong, Y.-J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett. 2012, 22, 4049–4054. [Google Scholar] [CrossRef]
- Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.-J.; Chang, J.S.; Rho, M.-C.; et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL (pro) inhibition. Bioorg. Med. Chem. 2010, 18, 7940–7947. [Google Scholar] [CrossRef]
- Liu, J.F.; Jiang, Z.Y.; Wang, R.R.; Zheng, Y.T.; Chen, J.J.; Zhang, X.M.; Ma, Y.B. Isatisine A, a novel alkaloid with an unprecedented skeleton from leaves of Isatis indigotica. Org. Lett. 2007, 9, 4127–4129. [Google Scholar] [CrossRef]
- Liua, S.-F.; Zhanga, Y.-Y.; Zhou, L.; Lin, B.; Huanga, X.-X.; Wang, X.-B.; Song, S.-J. Alkaloids with neuroprotective effects from the leaves of Isatis indigotica collected in the Anhui Province, China. Phytochemistry 2018, 149, 132–139. [Google Scholar] [CrossRef]
- Ke, L.; Wen, T.; Bradshaw, J.P.; Zhou, J.; Rao, P. Antiviral decoction of Radix isatidis (板藍根 bǎn lán gēn) inhibited influenza virus adsorption on MDCK cells by cytoprotective activity. J. Tradit. Complement. Med. 2012, 2, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, M.H.; Wang, F.; Bu, P.B.; Lin, S.; Zhu, C.G.; Li, Y.H.; Jiang, J.D.; Shi, J.G. Chemical constituents from root of Isatis indigotica. China J. Chin. Mater. Med. 2013, 38, 1172–1182. [Google Scholar] [CrossRef]
- Meng, L.J.; Guo, Q.L.; Zhu, C.G.; Xu, C.B.; Shi, J.G. Isatindigodiphindoside, an alkaloid glycoside with a new diphenylpropylindole skeleton from the root of Isatis indigotica. Chin. Chem. Lett. 2017. [Google Scholar] [CrossRef]
- Meng, L.J.; Guo, Q.L.; Chen, M.H.; Jiang, J.D.; Li, Y.H.; Shi, J.G. Isatindolignanoside A, a glucosidic indole-lignan conjugate from an aqueous extract of the Isatis indigotica roots. Chin. Chem. Lett. 2017. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; Zhou, H.; Zeng, L.; Chen, T.; Chen, Q.; Hu, P.; Yang, Z. Radix isatidis polysaccharides inhibit influenza a virus and influenza a virus-induced inflammation via suppression of host tlr3 signaling in vitro. Molecules 2017, 22, 116. [Google Scholar] [CrossRef]
- Hsuan, S.L.; Chang, S.C.; Wang, S.Y.; Liao, T.L.; Jong, T.T.; Chien, M.S.; Lee, W.C.; Chen, S.S.; Liao, J.W. The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus. J. Ethnopharmacol. 2009, 123, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-J.; Qiao, J.-L.; Zhu, R.-J.; Ge, C.-R. Study on antibacterial activity of Arnebia euchroma (Royle) Johnst and Isatis indigotica Fort extracts in vitro. Med. Plants 2010, 90, 47–54. [Google Scholar]
- Liu, Y.F.; Chen, M.H.; Wang, X.L.; Guo, Q.L.; Zhu, C.G.; Lin, S.; Xu, C.B.; Jiang, Y.P.; Li, Y.H.; Jiang, J.D.; et al. Antiviral enantiomers of a bisindole alkaloid with a new carbon skeleton from the roots of Isatis indigotica. Chin. Chem. Lett. 2015, 26, 931–936. [Google Scholar] [CrossRef]
- Zhao, G.H.; Li, T.; Qu, X.Y.; Zhang, N.N.; Lu, M.; Wang, J. Optimization of ultrasound-assisted extraction of indigo and indirubin from Isatis indigotica Fort. and their antioxidant capacities. Food Sci. Biotechnol. 2017, 26, 1313–1323. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Zhuo, Y.; Si, C.; Yang, L.; Meng, L.; Zhu, B. Antiviral activity of a polysaccharide from Radix Isatidis (Isatis indigotica Fortune) against hepatitis B virus (HBV) in vitro via activation of JAK/STAT signal pathway. J. Ethnopharmacol. 2020, 257, 112782. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Zhao, C.; Li, Q.; Zhu, T.; Ren, J.; Li, H.; Wu, J.H.; Ma, H.; Qu, W.S.; Wang, Y.X. An arabinogalactan from Isatis indigotica and its adjuvant effects on H1N1 influenza and hepatitis B antigens. J. Funct. Foods 2015, 18, 631–642. [Google Scholar] [CrossRef]
- Krawitz, C.; Mraheil, M.A.; Stein, M.; Imirzalioglu, C.; Domann, E.; Pleschka, S.; Hain, T. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement. Altern. Med. 2011, 11, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Back, A.T.; Lundkvist, A. Dengue viruses-an overview. Infect. Ecol. Epidemiol. 2013, 3, 19839. [Google Scholar] [CrossRef]
- Sam, S.S.; Omar, S.F.; Teoh, B.T.; Abd-Jamil, J.; AbuBakar, S. Review of Dengue hemorrhagic fever fatal cases seen among adults: A retrospective study. PLoS Negl. Trop. Dis. 2013, 7, e2194. [Google Scholar] [CrossRef] [Green Version]
- Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; Abubakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J. 2011, 8, 560. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Han, H.; Wang, W.; Gao, B. Anti-influenza virus effect of aqueous extracts from dandelion. Virol. J. 2011, 8, 538. [Google Scholar] [CrossRef] [Green Version]
- Lis, B.; Beata Olas, B. Pro-health activity of dandelion (Taraxacum officinale L.) and its food products—History and present. J. Funct. Foods 2019, 59, 40–48. [Google Scholar] [CrossRef]
- Lis, B.; Rolnik, A.; Jedrejek, D.; Soluch, A.; Stochmal, A.; Olas, B. Dandelion (Taraxacum officinale L.) root components exhibit anti-oxidative and antiplatelet action in an in vitro study. J. Funct. Foods 2019, 59, 16–24. [Google Scholar] [CrossRef]
- Dao, T.T.; Nguyen, P.H.; Lee, H.S.; Kim, E.; Park, J.; Lim, S.I.; Oh, W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflate. Bioorg. Med. Chem. Lett. 2011, 21, 294–298. [Google Scholar] [CrossRef]
- Dao, T.T.; Dang, T.T.; Nguyen, P.H.; Kim, E.; Thuong, P.T.; Oh, W.K. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses. Bioorg. Med. Chem. Lett. 2012, 22, 3688–3692. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.J.; Kim, Y.M.; Kim, J.H.; Kim, J.Y.; Park, J.Y.; Park, S.J.; Ryu, Y.B.; Lee, W.S. Homoisoflavonoids from Caesalpinia sappan displaying viral neuraminidases inhibition. Biol. Pharm. Bull. 2012, 35, 786–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.G.; Gao, R.M.; Li, Y.H.; Jiang, J.D.; Gong, N.B.; Li, L.; Lu, Y.; Tang, W.-Z.; Liu, Y.-B.; Qu, J.; et al. Antiviral Spirooliganones A and B with Unprecedented Skeletons from the Roots of Illicium oligandrum. Org. Lett. 2013, 15, 4450–4453. [Google Scholar] [CrossRef] [PubMed]
- Grienke, U.; Schmidtke, M.; von Grafenstein, S.; Kirchmair, J.; Liedl, K.R.; Rollinger, J.M. Influenza neuraminidase: A druggable target for natural products. Nat. Prod. Rep. 2012, 29, 11–36. [Google Scholar] [CrossRef]
- Diwan, A.; Ninawe, A.; Harke, S. Gene editing (CRISPR-Cas) technology and fisheries sector. Can. J. Biotechnol. 2017, 1, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, S.-M.; Yu, X.-H.; Tang, S.-L.; Tang, C.-K. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int. J. Antimicrob. Agents 2020, 55, 105951. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol. 2004, 78, 11334–11339. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O.W.; Zhu, W.; Puah, C.M.; Shen, X.; et al. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): Structure–activity relationship studies reveal salient pharmacophore features. Bioorg. Med. Chem. 2006, 14, 8295–8306. [Google Scholar] [CrossRef]
- Elumalai, P.; Gunadharini, D.N.; Senthilkumar, K.; Banudevi, S.; Arunkumar, R.; Benson, C.S.; Sharmila, G.; Arunakaran, J. Induction of apoptosis in human breast cancer cells by nimbolide through extrinsic and intrinsic pathway. Toxicol. Lett. 2012, 215, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.-C.; Kuo, Y.-H.; Jan, J.-T.; Liang, P.-H.; Wang, S.-Y.; Liu, H.-G.; Lee, C.-K.; Chang, S.-T.; Kuo, C.-J.; Lee, S.-S.; et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem. 2007, 50, 4087–4095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Chan, K.H.; Jiang, Y.J.; Kao, R.Y.; Lu, H.T.; Fan, K.W.; Cheng, V.C.C.; Tsui, W.H.W.; Hung, I.F.N.; Lee, T.S.W.; et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol. 2004, 31, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Urbagarova, B.M.; Shults, E.E.; Taraskin, V.V.; Radnaeva, L.D.; Petrova, T.N.; Rybalova, T.V.; Frolovad, T.S.; Pokrovskii, A.G.; Ganbaatar, J. Chromones and coumarins from Saposhnikovia divaricata (Turcz.) Schischk. Growing in Buryatia and Mongolia and their cytotoxicity. J. Ethnopharmacol 2020, 112517. [Google Scholar] [CrossRef] [PubMed]
- Yua, X.; Niua, Y.; Zheng, J.; Liu, H.; Jiang, G.; Chen, J.; Hong, M. Radix Saposhnikovia extract suppresses mouse allergic contact dermatitis by regulating dendritic-cell-activated Th1 cells. Phytomedicine 2015, 22, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.M.; Kim, H.S.; Lee, A.Y.; Kim, S.H.; Kim, H.K. Anti-inflammatory and antiosteoarthritis effects of Saposhnikovia divaricata ethanol extract: In vitro and in vivo studies. Evid. Based Complement. Altern. Med. 2016, 2016, 1984238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.-M.; Jiang, H.; Dai, H.-L.; Wang, Z.-W.; Jia, G.-Z.; Meng, X.-C. Polysaccharide enhances Radix Saposhnikoviae efficacy through inhibiting chromones decomposition in intestinal tract. Sci. Rep. 2016, 6, 326981–326988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreiner, J.; Pang, E.; Lenon, G.B.; Yang, A.W.H. Saposhnikoviae divaricata: A phytochemical, pharmacological, and pharmacokinetic review. Chin. J. Nat. Med. 2017, 15, 255–264. [Google Scholar] [CrossRef]
- Yang, J.-L.; Dhodarya, B.; Ha, T.K.Q.; Kim, J.; Kim, E.; Oh, W.K. Three new coumarins from Saposhnikoviae divaricata and their porcine epidemic diarrhea virus (PEDV) inhibitory activity. Tetrahedron 2015, 71, 4651–4658. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.; Su, L.; Jiang, Y.; Liu, B. Rapid characterisation and identification of compounds in Saposhnikovia Radix by high-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight mass spectrometry. Nat. Prod. Res. 2018, 32, 898–901. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Bianco, A.; Frezza, C.; Conti, F.; Bini, L.M.; Giuliani, C.; Bramucci, M.; Quassinti, L.; Damiano, S.; Lupidi, G.; et al. Essential oil composition, polar compounds, glandular trichomes and biological activity of Hyssopus officinalis subsp. Aristatus (Godr.) Nyman from central Italy. Ind. Crops Prod. 2015, 77, 353–363. [Google Scholar] [CrossRef]
- Borrelli, F.; Pagano, E.; Formisano, C.; Piccolella, S.; Fiorentino, A.; Tenore, G.C.; Izzo, A.A.; Rigano, D.; Pacifico, S. Hyssopus officinalis subsp. aristatus: An unexploited wild-growing crop for new disclosed bioactives. Ind. Crops Prod. 2019, 140, 111594. [Google Scholar] [CrossRef]
- Ozer, H.; Sokmen, M.; Gulluce, M.; Adiguzel, A.; Kilic, H.; Sahin, F.; Sokmen, A.; Baris, O. In-vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of Hyssopus officinalis L. ssp. Angustifolius. Ital. J. Food Sci. 2006, 18, 73–83. [Google Scholar]
- Vlase, L.; Benedec, D.; Hanganu, D.; Damian, G.; Csillag, I.; Sevastre, B.; Mot, A.C.; Silaghi-Dumitrescu, R.; Tilea, I. Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014, 19, 5490–5507. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Verma, R.S.; Chauhan, A.; Tiwari, R. Compositional variation in the leaf, flower and stem essential oils of Hyssop (Hyssopus officinalis L.) from Western-Himalaya. J. Herb. Med. 2014, 4, 89–95. [Google Scholar] [CrossRef]
- Letessier, M.P.; Svoboda, K.P.; Walters, D.R. Antifungal activity of the essential oil of Hyssop (Hyssopus officinalis). J. Phytopathol. 2001, 149, 673–678. [Google Scholar] [CrossRef]
- Drayton, D.L.; Liao, S.; Mounzer, R.H.; Ruddle, N.H. Lymphoid organ development: From ontogeny to neogenesis. Nat. Immunol. 2006, 7, 344–353. [Google Scholar] [CrossRef]
- Wang, Q.; Kuang, H.; Su, Y.; Sun, Y.; Feng, J.; Guo, R.; Chan, K. Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J. Ethnopharmacol. 2013, 146, 9–39. [Google Scholar] [CrossRef]
- Pu, W.L.; Zhang, M.-Y.; Bai, R.-Y.; Sun, L.-K.; Li, W.-H.; Yu, Y.-L.; Zhang, Y.; Song, L.; Wang, Z.-X.; Peng, Y.-F.; et al. Anti-inflammatory effects of Rhodiola rosea L.: A review. Biomed. Pharmacother. 2020, 121, 109552. [Google Scholar] [CrossRef]
- Nan, J.-X.; Jiang, Y.-Z.; Park, E.-J.; Ko, G.; Kim, Y.-C.; Sohn, D.H. Protective effect of Rhodiola sachalinensis extract on carbon tetrachloride-induced liver injury in rats. J. Ethnopharmacol. 2003, 84, 143–148. [Google Scholar] [CrossRef]
- Amsterdam, J.D.; Panossian, A.G.; Rhodiola rosea, L. as a putative botanical antidepressant. Phytomedicine 2016, 23, 770–783. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, H.; Sun, C.; Adu-Frimpong, M.; Deng, W.; Yu, J.; Xu, X. Antioxidant and hepatoprotective effects of purified Rhodiola rosea polysaccharides. Int. J. Biol. Macromol. 2018, 117, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Zimmers, T.A.; Fishel, M.L.; Bonetto, A. STAT3 in the systemic inflammation of cancer cachexia. Sem. Cell Dev. Biol. 2016, 54, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Hillmer, E.J.; Zhang, H.; Li, H.S.; Watowich, S.S. STAT3 signaling in immunity. J. Cytokine 2016, 31, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Z.; Qi, S.; Ling, L.; Lv, J.; Feng, Z. Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus. Int. Immunopharmacol. 2016, 35, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jin, R.-G.; Xiao, L.; Wang, Q.-J.; Yan, T.-H. Anti-asthma effects of synthetic salidroside through regulation of Th1/Th2 balance. Chin. J. Nat. Med. 2014, 12, 500–504. [Google Scholar] [CrossRef]
- Kokoska, L.; Janovska, D. Chemistry and pharmacology of Rhaponticum carthamoides: A review. Phytochemistry 2009, 70, 842–855. [Google Scholar] [CrossRef]
- Havlik, J.; Budesinsky, M.; Kloucek, P.; Kokosk, L.; Valterova, I.; Vasickov, S.; Zeleny, V. Norsesquiterpene hydrocarbon, chemical composition and antimicrobial activity of Rhaponticum carthamoides root essential oil. Phytochemistry 2009, 70, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Gao, L.; Shang, L.; Wang, G.; Wei, N.; Chu, T.; Chen, S.; Zhang, Y.; Huang, J.; Wang, J.; et al. Ecdysterones from Rhaponticum carthamoides (Willd.) Iljin reduce hippocampal excitotoxic cell loss and upregulate mTOR signaling in rats. Fitoterapia 2017, 119, 158–167. [Google Scholar] [CrossRef]
- Skała, E.; Kicel, A.; Olszewska, M.A.; Kiss, A.K.; Wysokińska, H. Establishment of hairy root cultures of Rhaponticum carthamoides (Willd.) Iljin for the production of biomass and caffeic acid derivatives. Biomed. Res. Int. 2015, 2015, 181098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skała, E.; Picot, L.; Bijak, M.; Saluk-Bijak, J.; Szemraj, J.; Kicel, A.; Olszewska, M.A.; Sitarek, P. An efficient plant regeneration from Rhaponticum carthamoides transformed roots, enhanced caffeoylquinic acid derivatives production in pRi-transformed plants and their biological activity. Ind. Crops Prod. 2019, 129, 327–338. [Google Scholar] [CrossRef]
- Shim, M.; Bae, J.Y.; Lee, Y.J.; Ahn, M.J. Tectoridin from Maackia amurensis modulates both estrogen and thyroid receptors. Phytomedicine 2014, 21, 602–606. [Google Scholar] [CrossRef]
- Oh, J.M.; Jang, H.-J.; Kim, W.J.; Kang, M.-G.; Baek, S.C.; Lee, J.P.; Park, D.; Oh, S.-R.; Kim, H. Calycosin and 8-O-methylretusin isolated from Maackia amurensis as potent and selective reversible inhibitors of human monoamine oxidase-B. Int. J. Biol. Macromol. 2020, 151, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Fedoreyev, S.A.; Pokushalova, T.V.; Veselova, M.V.; Glebko, L.I.; Kulesh, N.I.; Muzarok, T.I.; Seletskaya, L.D.; Bulgakov, V.P.; Zhuravlev, Y.N. Isoflavonoid production by callus cultures of Maackia amurensis. Fitoterapia 2000, 71, 365–372. [Google Scholar] [CrossRef]
- Li, X.; Li, J.F.; Wang, D.; Wang, W.N.; Cui, Z. Isoflavone glycosides from the bark of Maackia amurensis. Yao Xue Xue Bao 2009, 44, 63–68. [Google Scholar]
- Li, X.; Wang, D.; Xia, M.Y.; Wang, Z.H.; Wang, W.N.; Cui, Z. Cytotoxic prenylated flavonoids from the stem bark of Maackia amurensis. Chem. Pharm. Bull. 2009, 57, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Khodadadi, E.; Maroufi, P.; Khodadadi, E.; Esposito, I.; Ganbarov, K.; Espsoito, S.; Yousefi, M.; Zeinalzade, E.; Kafil, H.S. Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Microb. Pathog. 2020, 146, 104241. [Google Scholar] [CrossRef] [PubMed]
- Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res. 2008, 22, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Rizzato, G.; Scalabrin, E.; Radaelli, M.; Capodaglio, G.; Piccolo, O. A new exploration of licorice metabolome. Food Chem. 2017, 221, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Qi, L.; Zhou, J.; Li, P. Structural characterization and identification of oleanane- type triterpene saponins in Glycyrrhiza uralensis Fischer by rapid-resolution liquid chromatography coupled with time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 3567–3577. [Google Scholar] [CrossRef]
- Wang, C.; Chen, L.; Xu, C.; Shi, J.; Chen, S.; Tan, M.; Chen, J.; Zou, L.; Chen, C.; Liu, Z.; et al. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. (Review). Am. J. Chin. Med. 2020, 48, 17–45. [Google Scholar] [CrossRef]
- Stanković, N.; Mihajilov-Krstev, T.; Zlatković, B.; Stankov-Jovanović, V.; Mitić, V.; Jović, J.; Čomić, L.; Kocić, B.; Bernstein, N. Antibacterial and Antioxidant Activity of Traditional Medicinal Plants from the Balkan Peninsula. NJAS-Wagening. J. Life Sci. 2016, 78, 21–28. [Google Scholar] [CrossRef]
- Sornpet, B.; Potha, T.; Tragoolpua, Y.; Pringproa, K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac. J. Trop. Med. 2017, 10, 871–876. [Google Scholar] [CrossRef]
- Kumar, G.; Singh, D.; Tali, J.A.; Dheer, D.; Shankar, R. Andrographolide: Chemical modification and its effect on biological activities. Bioorg. Chem. 2020, 95, 103511. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sharma, Y.P. HPLC quantification of andrographolide in different parts of Andrographis paniculata (Burm. f.) Wall. ex Nees. J. Pharmacog. Phytochem. 2018, 7, 168–171. [Google Scholar]
- Yarnell, E. Herbs for viral respiratory infections. Altern. Complement. Ther. 2018, 24, 35–43. [Google Scholar] [CrossRef]
- Liu, Y.T.; Chen, H.W.; Lii, C.K.; Jhuang, J.H.; Huang, C.S.; Li, M.L.; Yao, H.T. A diterpenoid, 14-deoxy-11, 12-didehydroandrographolide, in Andrographis paniculata reduces steatohepatitis and liver injury in mice fed a high-fat and high-cholesterol diet. Nutrients 2020, 12, 523. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Xiao, X.; Wei, X.; Li, J.; Yang, J.; Tan, H.; Zhu, J.; Zhang, Q.; Wu, J.; Liu, L. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J. Med. Virol. 2020, 92, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Anil Kumare, N.V.; Martins, N.; Sharifi-Radh, J. The therapeutic potential of curcumin: A review of clinical trials. Eur. J. Med. Chem. 2019, 163, 527–545. [Google Scholar] [CrossRef]
- Boskabady, M.H.; Shakeri, F.; Naghdi, F. The effects of Curcuma Longa L. and its constituents in respiratory disorders and molecular mechanisms of their action. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Oxford, UK, 2020; Volume 65, pp. 239–269. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, G.; Wu, X.; Zhao, Y. Gypensapogenin H from hydrolyzate of total Gynostemma pentaphyllum saponins induces apoptosis in human breast carcinoma cells. Nat. Prod. Res. 2020, 34, 1642–1646. [Google Scholar] [CrossRef]
- Li, K.; Ma, C.; Li, H.; Dev, S.; He, J.; Qu, X. Medicinal value and potential therapeutic mechanisms of Gynostemma pentaphyllum (Thunb.) makino and its derivatives: An overview. Curr. Top. Med. Chem. 2019, 19, 2855–2867. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Xing, S.-F.; Lin, M.; Gu, Y.-L.; Piao, X.-L. Determination of flavonoids from Gynostemma pentaphyllum using ultra-performance liquid chromatography with triple quadrupole tandem mass spectrometry and an evaluation of their antioxidant activity in vitro. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 437–444. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Chang, C.-C.; Huang, H.-C.; Zhang, L.-J.; Liaw, C.-C.; Lin, Y.-C.; Nguyen, N.-L.; Vo, T.-H.; Cheng, Y.-Y.; Morris-Natschke, S.L.; et al. New dammarane-type saponins from Gynostemma Pentaphyllum. Molecules 2019, 24, 1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundqvist, L.C.E.; Rattigan, D.; Ehtesham, E.; Demmou, C.; Östenson, C.-G.; Sandström, C. Profiling and activity screening of Dammarane-type triterpen saponins from Gynostemma pentaphyllum with glucose-dependent insulin secretory activity. Sci. Rep. 2019, 9, 627. [Google Scholar] [CrossRef] [PubMed]
- Ab Rahman, Z.; Abd Shukor, S.; Abbas, H.; AL Machap, C.; Suhaimi Bin Alias, M.; Mirad, R.; Sofiyanand, S.; Othman, A.N. Optimization of extraction conditions for total phenolics and total flavonoids from Kaempferia parviflora rhizomes. Adv. Biosci. Biotechnol. 2018, 9, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Tuan, N.H.; Tung, N.T.; Khanh, P.N. Research on chemical compositions and anti-microbial activity of the essential oil of the rhizome of Kaempferia daklakensis N.H.Tuan & N.D.Trong—A new record from Vietnam flora. J. King Saud Univ. Sci. 2019, 31, 1505–1510. [Google Scholar] [CrossRef]
- Iha, S.M.; Migliato, K.F.; Vellosa, J.C.R.; Sacramento, L.V.S.; Pietro, R.C.L.R.; Isaac, V.L.B.; Brunetti, I.L.; Corrêa, M.A.; Salgado, H.R.N. Estudo fitoquímico de goiaba (Psidium guajava L.) com potential antioxidante para o desenvolvimento de formulação fitocosmética. Rev. Bras. Farmacog. 2008, 18, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Rajan, S.; Suvetha, P.; Thirunalasundari, T.; Jeeva, S. Anti-enteric bacterial activity of the traditional medicinal plants of Kanyakumari coast, Tamilnadu, India. J. Coast Life Med. 2015, 3, 640–644. [Google Scholar] [CrossRef]
- Flores, G.; Wu, S.B.; Negrin, A.; Kennelly, E.J. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chem. 2015, 170, 327–335. [Google Scholar] [CrossRef]
- Sobral–Souza, C.E.; Silva, A.R.P.; Leite, N.F.; Rocha, J.E.; Sousa, A.K.; Costa, J.G.M.; Menezes, I.R.A.; Cunha, F.A.B.; Rolime, L.A.; Coutinho, H.D.M. Psidium guajava bioactive product chemical analysis and heavy metal toxicity reduction. Chemosphere 2019, 216, 785–793. [Google Scholar] [CrossRef]
- Kembuan, G.; Lie, W.; Tumimomor, A. Potential usage of immune modulating supplements of the Echinacea genus for COVID-19 infection. Int. J. Med. Rev. Case Rep. 2020, 4, 1. [Google Scholar] [CrossRef]
- Aucoin, M.; Cooley, K.; Saunders, P.R.; Carè, J.; Anheyer, D.; Medina, D.N.; Cardozo, V.; Remy, D.; Hannan, N.; Garber, A. The effect of Echinacea spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review. Adv. Integr. Med. 2020. in Press. [Google Scholar] [CrossRef]
- David, S.; Cunningham, R. Echinacea for the prevention and treatment of upper respiratory tract infections: A systematic review and meta-analysis. Complement. Ther. Med. 2019, 44, 18–26. [Google Scholar] [CrossRef]
- Li, S.J.; Wang, Y.L.; Xue, J.; Zhao, N.; Zhu, T.S. The impact of COVID-19 epidemic declaration on psychological consequences: A study on active Weibo users. Int. J. Environ. Res. Public Health 2020, 17, 2032. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.X.; Gao, W.J.; Chen, M.Q.; Ying, X.P.; Tan, X.Y.; Liu, X.L. A survey of social attitudes during the COVID-19 epidemic: Analysis of survey data based on 24–25 January 2020. Natl. Gov. Wkly. 2020, 55–64. [Google Scholar] [CrossRef]
- Wang, J.; ZhuoWang, Z.; Liu, X.; Yang, X.; Zheng, M.; Bai, X. The impacts of a COVID-19 epidemic focus and general belief in a just world on individual emotions. Pers. Individ. Dif. 2020, 168, 110349. [Google Scholar] [CrossRef]
- Aman, F.; Masood, S. How Nutrition can help to fight against COVID-19 Pandemic. Pak. J. Med. Sci. 2020, 36, COVID19–S121. [Google Scholar] [CrossRef]
- . Panyod, S.; Ho, C.-T.; Sheena, L.-Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med. 2020, 10, 420–427. [Google Scholar] [CrossRef]
- Babich, O.; Prosekov, A.; Zaushintsena, A.; Sukhikh, A.; Dyshlyuk, L.; Ivanova, S. Identification and quantification of phenolic compounds of Western Siberia Astragalus danicus in different regions. Heliyon 2019, 5, e02245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakoor, H.; JackFeehan, J.; Al Dhaheri, A.S.; Alia, H.I.; Platat, C.; CheikhIsmail, L.; Apostolopoulos, V.; Stojanovska, L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2020, 143, 1–9. [Google Scholar] [CrossRef]
- Semba, R.D. Vitamin A and immunity to viral, bacterial and protozoan infections. Proc. Nutr. Soc. 1999, 58, 719–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keil, S.D.; Bowen, R.A.; Marschner, S. Inactivation of Middle East respiratory syndrome coronavirus (MERS-C o V) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment. Transfusion 2016, 56, 2948–2952. [Google Scholar] [CrossRef] [Green Version]
- Nonnecke, B.; McGill, J.; Ridpath, J.; Sacco, R.; Lippolis, J.; Reinhardt, T. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J. Dairy Sci. 2014, 97, 5566–5579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajagopal, S.; Kumar, R.A.; Deevi, D.S.; Satyanarayana, C.; Rajagopalan, R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J. Exp. Ther. Oncol. 2003, 3, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-H.; An, J.Y.; Kwon, Y.T.; Rhee, J.G.; Lee, Y.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem. 2009, 106, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.-W.; Ng, L.-T.; Chiang, L.-C.; Lin, C.-C. Antiviral effects of saikosaponins on human coronavirus 229e in vitro. Clin. Exp. Pharmacol. Physiol. 2006, 33, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.-G.; Hou, X.-T.; Zhang, T.-J.; Bai, G.; Hao, E.-W.; Chua, J.J.H.; Wattanathorna, J.; Sirisa-arda, P.; Eea, C.S.; Lowa, J.; et al. Carry forward advantages of traditional medicines in prevention and control of outbreak of COVID-19 pandemic. Chin. Herb. Med. 2020, in press. [Google Scholar] [CrossRef]
- Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Ranasinghe, C.J.P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr. 2020, 14, 367–382. [Google Scholar] [CrossRef]
Data Base | Search Query (Title/Abstract/Keywords) | Number of Articles | Matching the Search |
---|---|---|---|
Scopus | Medical Plants COVID | 18 | 4 |
Strengthen immunity COVID | 4 | 2 | |
Medical Plants Immunity | 110 | 22 | |
Medical Plants influenza | 61 | 18 | |
Antiviral Medical Plants | 215 | 36 | |
WoS | Medical Plants COVID | 2 | 1 |
Strengthen immunity COVID | 8 | 2 | |
Medical Plants Immunity | 32 | 3 | |
Medical Plants influenza | 17 | 9 | |
Antiviral Medical Plants | 70 | 12 |
Plant | Condition | Solvent | Part Used | Effects | References |
---|---|---|---|---|---|
Allium cepa | Extract | Chloroform | Bulb | Antiviral activity IFA H1N1) | [19] |
Natural | - | Bulb | Antiviral activity (SARS—cold and flu) | [20] | |
Allium sativum | Extract | Ethanol or aqueous | Roots | Antiviral activity (IFA—H1N1) | [19] |
Natural | - | Bulb | Immunoregulatory effect | [20] | |
Andrographis paniculata | Extracts | Aqueous or ethanol | Leaves | Antiviral activity (IF H5N1) | [113,116] |
Artemisia annua | Extract | Ethanol | Whole plant | Antiviral activity (SARS-CoV) | [21,22] |
Caesalpinia sappan | Extract | Ethanol | Heartwood | Antiviral activity (IFA—H1N1, H3N2, H9N2) | [22,64] |
Curcuma longa | Extract | Aqueous or ethanol | Roots | Antiviral activity (IF H5N1), prevention | [113,120] |
Echinacea purpurea | Essential oil | - | Flowers | Antiviral activity (SARS), Immunoregulatory, anti-inflammatory effects | [132,133,134] |
Syrup | - | Flowers, Roots | |||
Extract | Ethanol | Flowers | |||
Sap | - | Herb | |||
Herb mix | - | Herb and root | |||
Glycyrrhiza glabra | Powder | - | Centuries, dried roots and rhizomes | Antiviral, antimicrobial, antioxidant, antitumor activity | [108,109] |
Glycyrrhiza inflata | Extract | Acetone | Roots | Antiviral activity (IFA—H1N1) | [22,62] |
Powder | - | Centuries, dried roots and rhizomes | Antiviral, antimicrobial, antioxidant, antitumor activity | [108,109] | |
Glycyrrhiza uralensis | Powder | - | Centuries, dried roots and rhizomes | Antiviral, antimicrobial, antioxidant, antitumor activity | [108,109] |
Gynostemma pentaphyllum, | Extract | Aqueous or ethanol | Leaves or ground part | Antiviral (IF H5N1), antioxidant, antiproliferative activity | [113,123,124] |
Hyssopus officinalis | Extract | Ethanol | Leaf | Antiviral, antimicrobial, antioxidant, antifungal, insecticidal activity | [84] |
Essential oils | - | Leaf, flower and stem | [85,86] | ||
Illicium oligandrum | Powder | - | Roots | Antiviral activity (IFA) | [22,65] |
Isatis indigotica | Extract | - | Roots | Antiviral activity (SARS-CoV, influenza—H1N1, H3N2, H6N2, H9N2, viral pneumonia, and hepatitis) | [22,48] |
Kaempferia parviflora, | Extract | Aqueous or ethanol | Roots | Antiviral (IF H5N1) and antimicrobial activity | [113,126,127] |
Essential oil | - | ||||
Lycoris radiate | Extract | Ethanol | Stem cortex | Antiviral activity (SARS-CoV) | [21,22] |
Maackia amurensis | Extract | Ethanol | Bark | Antiviral and antioxidant activity | [105,106,107] |
Polygala karensium | Extract | Ethanol | Roots | Antiviral activity (IFA) | [22,63] |
Psidium guajava | Extract | Aqueous or ethanol | Leaves | Antiviral (IF H5N1), antimicrobial activity | [113,128,129,131] |
Ethanol | Whole plant | ||||
CH3OH/H2O/formic acid | Pulp | Antioxidant activity | [130] | ||
Pyrrosia lingua | Extract | Chloroform | Leaf | Antiviral activity (SARS-CoV) | [21,22] |
Rhaponticum carthamoides | Essential oil | - | Roots | antiviral, antimicrobial, antioxidant and antitumor activity, immunoregulatory activity | [98] |
Extract | Acetone, ethyl acetate or methanol | Leaf | [97] | ||
Rhodiola rosea | Extract | Aqueous | Roots | Emmunoregulatory effect; antiviral, antioxidant, anti-asthma activity | [92,94,96] |
Sambucus nigra | Extract * | - | - | Antiviral activity (IFA, IFB) | [22,55] |
Saposhnikovia divaricata | Extract | Ethanol | Roots | Emmunoregulatory effect | [77] |
Taraxacum officinale | Extract | Aqueous | Herb | Antiviral activity (IFA—H1N1) | [22,59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babich, O.; Sukhikh, S.; Prosekov, A.; Asyakina, L.; Ivanova, S. Medicinal Plants to Strengthen Immunity during a Pandemic. Pharmaceuticals 2020, 13, 313. https://doi.org/10.3390/ph13100313
Babich O, Sukhikh S, Prosekov A, Asyakina L, Ivanova S. Medicinal Plants to Strengthen Immunity during a Pandemic. Pharmaceuticals. 2020; 13(10):313. https://doi.org/10.3390/ph13100313
Chicago/Turabian StyleBabich, Olga, Stanislav Sukhikh, Alexander Prosekov, Lyudmila Asyakina, and Svetlana Ivanova. 2020. "Medicinal Plants to Strengthen Immunity during a Pandemic" Pharmaceuticals 13, no. 10: 313. https://doi.org/10.3390/ph13100313
APA StyleBabich, O., Sukhikh, S., Prosekov, A., Asyakina, L., & Ivanova, S. (2020). Medicinal Plants to Strengthen Immunity during a Pandemic. Pharmaceuticals, 13(10), 313. https://doi.org/10.3390/ph13100313