Imaging Tissue Physiology In Vivo by Use of Metal Ion-Responsive MRI Contrast Agents
Abstract
:1. Introduction
2. Detection of Zinc with Magnetic Resonance Imaging
2.1. The Role of Zinc in Human Physiology
2.2. Contrast Agents in Magnetic Resonance Imaging
2.3. “Responsive” MRI Contrast Agents
2.3.1. Zinc-Responsive Contrast Agents
2.3.2. In Vivo Detection of Zinc with MRI
2.4. Clinical Indications of Zinc Detection Using Magnetic Resonance Imaging
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yousaf, T.; Dervenoulas, G.; Politis, M. Chapter Two—Advances in MRI Methodology. In International Review of Neurobiology; Politis, M., Ed.; Academic Press: Salt Lake City, UT, USA, 2018; Volume 141, pp. 31–76. [Google Scholar]
- Lambert, R.G.W.; Østergaard, M.; Jaremko, J.L. Magnetic Resonance Imaging in Rheumatology. Magn. Reson. Imaging Clin. N. Am. 2018, 26, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Manias, K.A.; Gill, S.K.; MacPherson, L.; Foster, K.; Oates, A.; Peet, A.C. Magnetic resonance imaging based functional imaging in paediatric oncology. Eur. J. Cancer 2017, 72, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Lohrke, J.; Frenzel, T.; Endrikat, J.; Alves, F.C.; Grist, T.M.; Law, M.; Lee, J.M.; Leiner, T.; Li, K.C.; Nikolaou, K.; et al. 25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives. Adv. Ther. 2016, 33, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, E.M.; Caravan, P.; Rao, A.G.; McDonald, R.J.; Winfeld, M.; Fleck, R.J.; Gee, M.S. Gadolinium-based contrast agents in pediatric magnetic resonance imaging. Pediatr. Radiol. 2017, 47, 507–521. [Google Scholar] [CrossRef]
- Moats, R.A.; Fraser, S.E.; Meade, T.J. A “Smart” Magnetic Resonance Imaging Agent That Reports on Specific Enzymatic Activity. Angew. Chem. Int. Ed. Engl. 1997, 36, 726–728. [Google Scholar] [CrossRef]
- De Leon-Rodriguez, L.; Lubag, A.J., Jr.; Sherry, A.D. Imaging free zinc levels in vivo—What can be learned? Inorg. Chim. Acta 2012, 393, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef]
- Andreini, C.; Banci, L.; Bertini, I.; Rosato, A. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 2006, 5, 196–201. [Google Scholar] [CrossRef]
- Tubek, S. Zinc Supplementation or Regulation of its Homeostasis: Advantages and Threats. Biol. Trace Elem. Res. 2007, 119, 1–9. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Fukunaka, A.; Fujitani, Y. Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. Int. J. Mol. Sci. 2018, 19, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, R.B.; Costello, L.C. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch. Biochem. Biophys. 2007, 463, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaichick, V.Y.; Sviridova, T.; Zaichick, S. Zinc in the human prostate gland: Normal, hyperplastic and cancerous. Int. Urol. Nephrol. 1997, 29, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, M.; Tanaka, K.I.; Kato-Negishi, M. Zinc, Carnosine, and Neurodegenerative Diseases. Nutrients 2018, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.Y.; Jung, J.W.; Suh, S.W. The Emerging Role of Zinc in the Pathogenesis of Multiple Sclerosis. Int. J. Mol. Sci. 2017, 18, 2070. [Google Scholar] [CrossRef] [Green Version]
- Doboszewska, U.; Młyniec, K.; Wlaź, A.; Poleszak, E.; Nowak, G.; Wlaź, P. Zinc signaling and epilepsy. Pharmacol. Ther. 2019, 193, 156–177. [Google Scholar] [CrossRef]
- Orlov, A.P.; Orlova, M.A.; Trofimova, T.P.; Kalmykov, S.N.; Kuznetsov, D.A. The role of zinc and its compounds in leukemia. J. Biol. Inorg. Chem. 2018, 23, 347–362. [Google Scholar] [CrossRef]
- Pan, Z.; Choi, S.; Ouadid-Ahidouch, H.; Yang, J.M.; Beattie, J.H.; Korichneva, I. Zinc transporters and dysregulated channels in cancers. Front. Biosci. 2017, 22, 623–643. [Google Scholar] [CrossRef] [Green Version]
- de Almeida Brasiel, P.G. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin. Nutr. ESPEN 2020, 38, 65–66. [Google Scholar] [CrossRef]
- Zabetakis, I.; Lordan, R.; Norton, C.; Tsoupras, A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients 2020, 12, 1466. [Google Scholar] [CrossRef]
- Rink, L.; Gabriel, P. Zinc and the immune system. Proc. Nutr. Soc. 2000, 59, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maret, W. Zinc in Cellular Regulation: The Nature and Significance of “Zinc Signals”. Int. J. Mol. Sci. 2017, 18, 2285. [Google Scholar] [CrossRef] [Green Version]
- Vallee, B.L.; Falchuk, K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993, 73, 79–118. [Google Scholar] [CrossRef] [PubMed]
- Li, W.H. Functional analysis of islet cells in vitro, in situ, and in vivo. Semin. Cell Dev. Biol. 2020, 103, 14–19. [Google Scholar] [CrossRef]
- Ghazvini Zadeh, E.H.; Huang, Z.; Xia, J.; Li, D.; Davidson, H.W.; Li, W. ZIGIR, a Granule-Specific Zn2+ Indicator, Reveals Human Islet α Cell Heterogeneity. Cell Rep. 2020, 32. [Google Scholar] [CrossRef]
- Zalewski, P.D.; Millard, S.H.; Forbes, I.J.; Kapaniris, O.; Slavotinek, A.; Betts, W.H.; Ward, A.D.; Lincoln, S.F.; Mahadevan, I. Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J. Histochem. Cytochem. 1994, 42, 877–884. [Google Scholar] [CrossRef]
- Györkey, F.; Min, K.-W.; Huff, J.A.; Györkey, P. Zinc and magnesium in human prostate gland: Normal, hyperplastic, and neoplastic. Cancer Res. 1967, 27, 1348–1353. [Google Scholar]
- Frederickson, C.J.; Koh, J.Y.; Bush, A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005, 6, 449–462. [Google Scholar] [CrossRef]
- Chen, F.; Bu, W.; Lu, C.; Chen, G.; Chen, M.; Shen, X.; Liu, R.; Shi, J. Hydrothermal synthesis of a highly sensitive T2-weigthed MRI contrast agent: Zinc-doped superparamagnetic iron oxide nanocrystals. J. Nanosci. Nanotechnol. 2011, 11, 10438–10443. [Google Scholar] [CrossRef]
- Major, J.L.; Parigi, G.; Luchinat, C.; Meade, T.J. The synthesis and in vitro testing of a zinc-activated MRI contrast agent. Proc. Natl. Acad. Sci. USA 2007, 104, 13881–13886. [Google Scholar] [CrossRef] [Green Version]
- Botta, M. Second Coordination Sphere Water Molecules and Relaxivity of Gadolinium(III) Complexes: Implications for MRI Contrast Agents. Eur. J. Inorg. Chem. 2000, 2000, 399–407. [Google Scholar] [CrossRef]
- Li, W.H.; Parigi, G.; Fragai, M.; Luchinat, C.; Meade, T.J. Mechanistic studies of a calcium-dependent MRI contrast agent. Inorg. Chem. 2002, 41, 4018–4024. [Google Scholar] [CrossRef] [PubMed]
- Solomon, I. Relaxation Processes in a System of Two Spins. Phys. Rev. 1955, 99, 559–565. [Google Scholar] [CrossRef]
- Bloembergen, N.; Morgan, L.O. Proton Relaxation Times in Paramagnetic Solutions. Effects of Electron Spin Relaxation. J. Chem. Phys. 1961, 34, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef] [PubMed]
- Aime, S.; Crich, S.G.; Gianolio, E.; Giovenzana, G.B.; Tei, L.; Terreno, E. High sensitivity lanthanide(III) based probes for MR-medical imaging. Coord. Chem. Rev. 2006, 250, 1562–1579. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Hazhirkarzar, B.; Dublin, A.B. Magnetic Resonance Imaging (MRI) Gadolinium. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482487/ (accessed on 22 September 2020).
- Hanaoka, K.; Kikuchi, K.; Urano, Y.; Nagano, T. Selective sensing of zinc ions with a novel magnetic resonance imaging contrast agent. J. Chem. Soc. Perkin Trans. 2 2001, 9, 1840–1843. [Google Scholar] [CrossRef]
- Hanaoka, K.; Kikuchi, K.; Urano, Y.; Narazaki, M.; Yokawa, T.; Sakamoto, S.; Yamaguchi, K.; Nagano, T. Design and synthesis of a novel magnetic resonance imaging contrast agent for selective sensing of zinc ion. Chem. Biol. 2002, 9, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. Development of a zinc ion-selective luminescent lanthanide chemosensor for biological applications. J. Am. Chem. Soc. 2004, 126, 12470–12476. [Google Scholar] [CrossRef]
- Major, J.L.; Boiteau, R.M.; Meade, T.J. Mechanisms of ZnII-activated magnetic resonance imaging agents. Inorg. Chem. 2008, 47, 10788–10795. [Google Scholar] [CrossRef] [Green Version]
- Esqueda, A.C.; Lopez, J.A.; Andreu-de-Riquer, G.; Alvarado-Monzon, J.C.; Ratnakar, J.; Lubag, A.J.; Sherry, A.D.; De Leon-Rodriguez, L.M. A new gadolinium-based MRI zinc sensor. J. Am. Chem. Soc. 2009, 131, 11387–11391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, A.; Logothetis, N.K.; Parker, D. Critical in vitro evaluation of responsive MRI contrast agents for calcium and zinc. Chemistry 2011, 17, 1529–1537. [Google Scholar] [CrossRef] [PubMed]
- De Leon-Rodriguez, L.M.; Lubag, A.J.; Lopez, J.A.; Andreu-de-Riquer, G.; Alvarado-Monzon, J.C.; Sherry, A.D. A second generation MRI contrast agent for imaging zinc ions in vivo. Medchemcomm 2012, 3, 480–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Li, W.S.; Xu, P.; Zhang, L.Y.; Chen, Z.N. Zn2+ responsive bimodal magnetic resonance imaging and fluorescent imaging probe based on a gadolinium(III) complex. Inorg. Chem. 2012, 51, 9508–9516. [Google Scholar] [CrossRef] [PubMed]
- Stasiuk, G.J.; Minuzzi, F.; Sae-Heng, M.; Rivas, C.; Juretschke, H.P.; Piemonti, L.; Allegrini, P.R.; Laurent, D.; Duckworth, A.R.; Beeby, A.; et al. Dual-modal magnetic resonance/fluorescent zinc probes for pancreatic beta-cell mass imaging. Chemistry 2015, 21, 5023–5033. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.F.; Clavijo Jordan, V.; Bochner, F.; Chirayil, S.; Paranawithana, N.; Zhang, S.; Lo, S.T.; Wen, X.; Zhao, P.; Neeman, M.; et al. Imaging Insulin Secretion from Mouse Pancreas by MRI Is Improved by Use of a Zinc-Responsive MRI Sensor with Lower Affinity for Zn(2+) Ions. J. Am. Chem. Soc. 2018, 140, 17456–17464. [Google Scholar] [CrossRef]
- Knop, R.H.; Frank, J.A.; Dwyer, A.J.; Girton, M.E.; Naegele, M.; Schrader, M.; Cobb, J.; Gansow, O.; Maegerstadt, M.; Brechbiel, M.; et al. Gadolinium cryptelates as MR contrast agents. J. Comput. Assist. Tomogr. 1987, 11, 35–42. [Google Scholar] [CrossRef]
- Nwe, K.; Bernardo, M.; Regino, C.A.; Williams, M.; Brechbiel, M.W. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates. Bioorg. Med. Chem. 2010, 18, 5925–5931. [Google Scholar] [CrossRef] [Green Version]
- Brillet, G.; Dubois, M.; Beaufils, H.; Bourbouze, R.; Deray, G. Renal tolerance of gadolinium-DOTA and gadolinium-DTPA in rats. Invest. Radiol. 1994, 29, 352–354. [Google Scholar] [CrossRef]
- Lubag, A.J.; De Leon-Rodriguez, L.M.; Burgess, S.C.; Sherry, A.D. Noninvasive MRI of beta-cell function using a Zn2+-responsive contrast agent. Proc. Natl. Acad. Sci. USA 2011, 108, 18400–18405. [Google Scholar] [CrossRef] [Green Version]
- Jaszberényi, Z.; Tóth, E.; Kálai, T.; Király, R.; Burai, L.; Brücher, E.; Merbach, A.E.; Hideg, K. Synthesis and complexation properties of DTPA-N,N″-bis[bis(n-butyl)]-N’-methyl-tris(amide). Kinetic stability and water exchange of its Gd3+ complex. Dalton Trans. 2005, 694–701. [Google Scholar] [CrossRef]
- Yu, J.; Martins, A.F.; Preihs, C.; Clavijo Jordan, V.; Chirayil, S.; Zhao, P.; Wu, Y.; Nasr, K.; Kiefer, G.E.; Sherry, A.D. Amplifying the sensitivity of zinc(II) responsive MRI contrast agents by altering water exchange rates. J. Am. Chem. Soc. 2015, 137, 14173–14179. [Google Scholar] [CrossRef]
- Yin, T.; Coudyzer, W.; Peeters, R.; Liu, Y.; Cona, M.M.; Feng, Y.; Xia, Q.; Yu, J.; Jiang, Y.; Dymarkowski, S.; et al. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners. Contrast Media Mol. Imaging 2015, 10, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Hines, C.D.G.; Jordan, V.C.; Gantert, L.T.; Wang, S.; Conarello, S.; Preihs, C.; Chirayil, S.; Michael, K.; Sherry, A.D.; Evelhoch, J.L. Imaging beta cell function in non-human primates using a Zinc(II) sensitive MRI contrast agent. Front. Endocrinol. 2020. Under review. [Google Scholar]
- Zhu, S.; Larkin, D.; Lu, S.; Inouye, C.; Haataja, L.; Anjum, A.; Kennedy, R.; Castle, D.; Arvan, P. Monitoring C-Peptide Storage and Secretion in Islet β-Cells In Vitro and In Vivo. Diabetes 2016, 65, 699–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaac, M.; Pallier, A.; Szeremeta, F.; Bayle, P.A.; Barantin, L.; Bonnet, C.S.; Seneque, O. MRI and luminescence detection of Zn(2+) with a lanthanide complex-zinc finger peptide conjugate. Chem. Commun. (Camb) 2018, 54, 7350–7353. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Jing, X.; Zhang, X.; Hu, X.; Wu, Y.; Duan, C. Gadolinium(III)–fluorescein complex as a dual modal probe for MRI and fluorescence zinc sensing. Tetrahedron 2012, 68, 306–310. [Google Scholar] [CrossRef]
- Malikidogo, K.P.; Da Silva, I.; Morfin, J.F.; Lacerda, S.; Barantin, L.; Sauvage, T.; Sobilo, J.; Lerondel, S.; Toth, E.; Bonnet, C.S. A cocktail of (165)Er(iii) and Gd(iii) complexes for quantitative detection of zinc using SPECT and MRI. Chem. Commun. (Camb) 2018, 54, 7597–7600. [Google Scholar] [CrossRef]
- Bonnet, C.S.; Caille, F.; Pallier, A.; Morfin, J.F.; Petoud, S.; Suzenet, F.; Toth, E. Mechanistic studies of Gd3+-based MRI contrast agents for Zn2+ detection: Towards rational design. Chemistry 2014, 20, 10959–10969. [Google Scholar] [CrossRef] [PubMed]
- Bony, B.A.; Baeck, J.S.; Chang, Y.; Lee, G.H. Non-Specific Zn2+ Ion Sensing Using Ultrasmall Gadolinium Oxide Nanoparticle as a Magnetic Resonance Imaging Contrast Agent. J. Nanosci. Nanotechnol. 2016, 16, 2433–2437. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wei, Z.; Chu, C.; Zhang, J.; Song, X.; Walczak, P.; Bulte, J.W.M. Development of Zinc-Specific iCEST MRI as an Imaging Biomarker for Prostate Cancer. Angew. Chem. Int. Ed. Engl. 2019, 58, 15512–15517. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhao, D.; Li, N.; Shen, F.; Machuki, J.O.; Yang, D.; Li, J.; Tang, D.; Yu, Y.; Tian, J.; et al. Multifunctional Fe3O4@Polydopamine@DNA-Fueled Molecular Machine for Magnetically Targeted Intracellular Zn(2+) Imaging and Fluorescence/MRI Guided Photodynamic-Photothermal Therapy. Anal. Chem. 2019, 91, 7850–7857. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, Y.; Chen, H.; Zhang, F.; Zhang, Q.; Chen, G.; Zhu, X. Dual-enzyme-propelled unbounded DNA walking nanomachine for intracellular imaging of lowly expressed microRNA. Nano Res. 2019, 12, 1055–1060. [Google Scholar] [CrossRef]
- Li, D.; Zhou, W.; Yuan, R.; Xiang, Y. A DNA-Fueled and Catalytic Molecule Machine Lights Up Trace Under-Expressed MicroRNAs in Living Cells. Anal. Chem. 2017, 89, 9934–9940. [Google Scholar] [CrossRef]
- Yin, P.; Choi, H.M.T.; Calvert, C.R.; Pierce, N.A. Programming biomolecular self-assembly pathways. Nature 2008, 451, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Xie, D.; Kadakia, R.T.; Wang, W.; Que, E.L. Harnessing chemical exchange: (19)F magnetic resonance OFF/ON zinc sensing with a Tm(iii) complex. Chem. Commun. (Camb) 2020, 56, 6257–6260. [Google Scholar] [CrossRef]
- Srivastava, K.; Ferrauto, G.; Harris, S.M.; Longo, D.L.; Botta, M.; Aime, S.; Pierre, V.C. Complete on/off responsive ParaCEST MRI contrast agents for copper and zinc. Dalton Trans. 2018, 47, 11346–11357. [Google Scholar] [CrossRef]
- Herynek, V.; Turnovcova, K.; Galisova, A.; Kaman, O.; Marekova, D.; Koktan, J.; Vosmanska, M.; Kosinova, L.; Jendelova, P. Manganese-Zinc Ferrites: Safe and Efficient Nanolabels for Cell Imaging and Tracking In Vivo. ChemistryOpen 2019, 8, 155–165. [Google Scholar] [CrossRef]
- Sobhani, T.; Shahbazi-Gahrouei, D.; Rostami, M.; Zahraei, M.; Farzadniya, A. Assessment of Manganese-Zinc Ferrite Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent for the Detection of 4T1 Breast Cancer Cells. J. Med. Signals Sens. 2019, 9, 245–251. [Google Scholar] [CrossRef]
- Zhang, X.A.; Lovejoy, K.S.; Jasanoff, A.; Lippard, S.J. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing. Proc. Natl. Acad. Sci. USA 2007, 104, 10780–10785. [Google Scholar] [CrossRef] [Green Version]
- Layne, K.A.; Dargan, P.I.; Archer, J.R.H.; Wood, D.M. Gadolinium deposition and the potential for toxicological sequelae—A literature review of issues surrounding gadolinium-based contrast agents. Br. J. Clin. Pharmacol. 2018, 84, 2522–2534. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, A.H.; Zhao, Y.; Farooq, Z.; Prince, M.R. Immediate Allergic Reactions to Gadolinium-based Contrast Agents: A Systematic Review and Meta-Analysis. Radiology 2018, 286, 471–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, J.R.; Kalb, B.; Martin, D.R. Incidence and Risk Factors for Gadolinium-Based Contrast Agent Immediate Reactions. Top. Magn. Reson. Imaging 2016, 25, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Olchowy, C.; Cebulski, K.; Łasecki, M.; Chaber, R.; Olchowy, A.; Kałwak, K.; Zaleska-Dorobisz, U. The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity—A systematic review. PLoS ONE 2017, 12, e0171704. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Zhang, X.; Dhar, S.; Faas, H.; Lippard, S.J.; Jasanoff, A. In Vivo Imaging with a Cell-Permeable Porphyrin-Based MRI Contrast Agent. Chem. Biol. 2010, 17, 665–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemaire, K.; Ravier, M.A.; Schraenen, A.; Creemers, J.W.M.; Van de Plas, R.; Granvik, M.; Van Lommel, L.; Waelkens, E.; Chimienti, F.; Rutter, G.A.; et al. Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc. Natl. Acad. Sci. USA 2009, 106, 14872–14877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodson, G.; Steiner, D. The role of assembly in insulin’s biosynthesis. Curr. Opin. Struct. Biol. 1998, 8, 189–194. [Google Scholar] [CrossRef]
- Sherry, A.D.; Woods, M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu. Rev. Biomed. Eng. 2008, 10, 391–411. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.K.; Kim, P.; Zhang, X.A.; Yun, S.H.; Moore, A.; Lippard, S.J.; Medarova, Z. A novel imaging approach for early detection of prostate cancer based on endogenous zinc sensing. Cancer Res. 2010, 70, 6119–6127. [Google Scholar] [CrossRef] [Green Version]
- Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The Metabolic Phenotype of Prostate Cancer. Front. Oncol. 2017, 7, 131. [Google Scholar] [CrossRef]
- Franz, M.C.; Anderle, P.; Bürzle, M.; Suzuki, Y.; Freeman, M.R.; Hediger, M.A.; Kovacs, G. Zinc transporters in prostate cancer. Mol. Asp. Med. 2013, 34, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavijo Jordan, M.V.; Lo, S.T.; Chen, S.; Preihs, C.; Chirayil, S.; Zhang, S.; Kapur, P.; Li, W.H.; De Leon-Rodriguez, L.M.; Lubag, A.J.; et al. Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate. Proc. Natl. Acad. Sci. USA 2016, 113, E5464–E5471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavijo Jordan, V.; Al-Ebraheem, A.; Geraki, K.; Dao, E.; Martins, A.F.; Chirayil, S.; Farquharson, M.; Sherry, A.D. Synchrotron Radiation X-ray Fluorescence Elemental Mapping in Healthy versus Malignant Prostate Tissues Provides New Insights into the Glucose-Stimulated Zinc Trafficking in the Prostate As Discovered by MRI. Inorg. Chem. 2019, 58, 13654–13660. [Google Scholar] [CrossRef] [PubMed]
- Khalighinejad, P.; Parrott, D.; Jordan, V.C.; Chirayil, S.; Preihs, C.; Xi, Y.; Rofsky, N.; Sherry, A.D. MRI detection of glucose-stimulated zinc secretion in the enlarged dog prostate as a potential method for differentiating prostate cancer from benign prostatic hyperplasia. 2020. Manuscript in preparation. [Google Scholar]
- Vikram, A.; Jena, G. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats. Biochem. Biophys. Res. Commun. 2010, 398, 260–265. [Google Scholar] [CrossRef]
- Shibuya, K.; Okada, M.; Suzuki, S.; Seino, M.; Seino, S.; Takeda, H.; Kitanaka, C. Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget 2015, 6, 651–661. [Google Scholar] [CrossRef] [Green Version]
- Parrott, D.; Khalighinejad, P.; Clavio-Jordan, V.; Thapa, B.; Lo, S.-T.; Suh, E.H.; Sherry, A.D. Metabolic Pathway of Glucose Stimulated Zinc Secretion in the Healthy Prostate. 2020. Manuscript in preparation. [Google Scholar]
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)-Zinc Review. J. Nutr. 2015, 146, 858s–885s. [Google Scholar] [CrossRef] [Green Version]
- Vignozzi, L.; Rastrelli, G.; Corona, G.; Gacci, M.; Forti, G.; Maggi, M. Benign prostatic hyperplasia: A new metabolic disease? J. Endocrinol. Investig. 2014, 37, 313–322. [Google Scholar] [CrossRef]
- Matheson, B.K.; Adams, J.L.; Zou, J.; Patel, R.; Franklin, R.B. Effect of metabolic inhibitors on ATP and citrate content in PC3 prostate cancer cells. Prostate 2007, 67, 1211–1218. [Google Scholar] [CrossRef]
- Gacci, M.; Sebastianelli, A.; Salvi, M.; De Nunzio, C.; Vignozzi, L.; Corona, G.; Jaeger, T.; Chini, T.; Russo, G.I.; Maggi, M.; et al. Benign prostatic enlargement can be influenced by metabolic profile: Results of a multicenter prospective study. BMC Urol. 2017, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Christudoss, P.; Selvakumar, R.; Fleming, J.J.; Gopalakrishnan, G. Zinc status of patients with benign prostatic hyperplasia and prostate carcinoma. Indian J. Urol. 2011, 27, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wu, Q.; Hu, X.; Dong, X.; Wang, L.; Liu, Q.; Long, Z.; Li, L. Comparative study of serum zinc concentrations in benign and malignant prostate disease: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 25778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, L.C.; Franklin, R.B. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch. Biochem. Biophys. 2016, 611, 100–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attard, G.; Parker, C.; Eeles, R.A.; Schröder, F.; Tomlins, S.A.; Tannock, I.; Drake, C.G.; de Bono, J.S. Prostate cancer. Lancet 2016, 387, 70–82. [Google Scholar] [CrossRef]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Ghafoor, S.; Burger, I.A.; Vargas, A.H. Multimodality Imaging of Prostate Cancer. J. Nucl. Med. 2019, 60, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Tang, M.; Chen, S.; Lei, X.; Zhang, X.; Huan, Y. A meta-analysis of use of Prostate Imaging Reporting and Data System Version 2 (PI-RADS V2) with multiparametric MR imaging for the detection of prostate cancer. Eur. Radiol. 2017, 27, 5204–5214. [Google Scholar] [CrossRef]
- Glazer, D.I.; Mayo-Smith, W.W.; Sainani, N.I.; Sadow, C.A.; Vangel, M.G.; Tempany, C.M.; Dunne, R.M. Interreader Agreement of Prostate Imaging Reporting and Data System Version 2 Using an In-Bore MRI-Guided Prostate Biopsy Cohort: A Single Institution’s Initial Experience. Am. J. Roentgenol. 2017, 209, W145–W151. [Google Scholar] [CrossRef]
- Chabosseau, P.; Rutter, G.A. Zinc and diabetes. Arch. Biochem. Biophys. 2016, 611, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, P.; Pigera, S.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Zinc and diabetes mellitus: Understanding molecular mechanisms and clinical implications. Daru 2015, 23, 44. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. (Lausanne) 2017, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girish, B.N.; Rajesh, G.; Vaidyanathan, K.; Balakrishnan, V. Zinc status in chronic pancreatitis and its relationship with exocrine and endocrine insufficiency. JOP 2009, 10, 651–656. [Google Scholar] [PubMed]
- Singh, V.K.; Yadav, D.; Garg, P.K. Diagnosis and Management of Chronic Pancreatitis: A Review. JAMA 2019, 322, 2422–2434. [Google Scholar] [CrossRef]
- Garg, S.K.; Singh, D.; Sarvepalli, S.; Bazerbachi, F.; Puthanveedu, N.D.; Obaitan, I.; Haffar, S.; Goyal, H.; Sanaka, M.R. Incidence, Admission Rates, and Economic Burden of Adult Emergency Visits for Chronic Pancreatitis: Data From the National Emergency Department Sample, 2006 to 2012. J. Clin. Gastroenterol. 2019, 53, e328–e333. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Dong, X.; Hu, X.; Long, Z.; Wang, L.; Liu, Q.; Sun, B.; Wang, Q.; Wu, Q.; Li, L. Zinc levels in seminal plasma and their correlation with male infertility: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 22386. [Google Scholar] [CrossRef]
- Portbury, S.D.; Adlard, P.A. Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Alzheimer’s Disease: Common Pathologies Potentiated by Altered Zinc Homeostasis. J. Alzheimers Dis. 2015, 46, 297–311. [Google Scholar] [CrossRef]
Contrast Agent | First Author (Year) | B0, Temperature | r1 (mM−1s−1) | KD Zn | Molecular Structure | |
---|---|---|---|---|---|---|
Without the Trigger Ϯ | With the Trigger Ϯ | |||||
GdLc | Hanaoka (2001) [39] | 300 MHz, 25 °C | 6.06 | 3.98 | - | Figure 2a |
(GdLa)2− | Hanaoka (2002) [40] | 300 MHz, 25 °C | 4.8 | 3.4 | - | Figure 2b |
Gd-7 | Hanaoka (2004) [41] | 20 MHz, 25 °C | 6.05 | 5.81 | 59 nM | Figure 2c |
Gd-daa3 | Major (2007) [31] | 60 MHz, 37 °C | 2.3 | 5.1 | 240 μM | Figure 2d |
Gd-apa3 | Major (2008) [42] | 60 MHz, 37 °C | 3.4 | 6.9 | - | Figure 2e |
GdDOTA-diBPEN | Esqueda (2009) [43] | 23 MHz, 37 °C | 5.0 | 17.4 | 33.6 nM | Figure 2f |
Gd.Ll | Mishra (2011) [44] | 60 MHz, 37 °C | 3.7 | 6.3 | 126 μM | Figure 2g |
GdDOTA-diBPYREN | De Leon (2012) [45] | 23 MHz, 37 °C | 4.2 | 15.3 | 379 μM | Figure 2h |
Gd.L | Luo (2012) [46] | 23 MHz, 25 °C | 3.8 | 5.9 | - | Figure 2i |
Gd.l | Stasiuk (2015) [47] | 400 MHz, 37 °C | 4.2 | 6.6 | 22 μM | Figure 2j |
GdL1 | Martins (2018) [48] | 23 MHz, 37 °C | 4.8 | 17.8 | 118 nM | Figure 2k |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalighinejad, P.; Parrott, D.; Sherry, A.D. Imaging Tissue Physiology In Vivo by Use of Metal Ion-Responsive MRI Contrast Agents. Pharmaceuticals 2020, 13, 268. https://doi.org/10.3390/ph13100268
Khalighinejad P, Parrott D, Sherry AD. Imaging Tissue Physiology In Vivo by Use of Metal Ion-Responsive MRI Contrast Agents. Pharmaceuticals. 2020; 13(10):268. https://doi.org/10.3390/ph13100268
Chicago/Turabian StyleKhalighinejad, Pooyan, Daniel Parrott, and A. Dean Sherry. 2020. "Imaging Tissue Physiology In Vivo by Use of Metal Ion-Responsive MRI Contrast Agents" Pharmaceuticals 13, no. 10: 268. https://doi.org/10.3390/ph13100268
APA StyleKhalighinejad, P., Parrott, D., & Sherry, A. D. (2020). Imaging Tissue Physiology In Vivo by Use of Metal Ion-Responsive MRI Contrast Agents. Pharmaceuticals, 13(10), 268. https://doi.org/10.3390/ph13100268