Amperometric Biosensors for Real Time Assays of Organophosphates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biosensor preparation
2.2. Measuring procedure employing a preincubation step
2.3. Real time monitoring of organophosphates presence
3. Experimental Section
3.1 Enzymes and chemicals
3.2 Device
3.3 Immobilization procedure
3.4 Measuring protocol
3.5 Experimental data processing
Acknowledgments
References
- Kuca, K.; Jun, D.; Musilek, K. Structural requirements of acetylcholinesterase reactivators. Mini Rev. Med. Chem. 2006, 6, 269–277. [Google Scholar]
- Kuca, K.; Cabal, J.; Kassa, J. In vitro reactivation of sarin-inhibited brain acetylchoinesterase from different species by various oximes. J. Enz. Inhib. Med. Chem. 2005, 20, 227–232. [Google Scholar]
- Kuca, K.; Jun, D.; Bajgar, J. Currently used cholinesterase reactivators against nerve agent intoxication: Comparison of their effectivity in vitro. Drug Chem. Toxicol. 2007, 30, 31–40. [Google Scholar]
- Pohanka, M.; Jun, D.; Kuca, K. Photometric microplate assay for estimation of paraoxon inhibited acetylcholinesterase reactivation efficacy. J. Enz. Inhib. Med. Chem. [CrossRef]
- Arduini, F.; Ricci, F.; Bourais, L.; Amine, A.; Moscone, D.; Palleschi, G. Extraction and detection of pesticides by cholinesterase inhibition in a two-phase system: a strategy to avoid heavy metal interference. Anal. Lett. 2005, 38, 1703–1719. [Google Scholar]
- No, H.Y.; Kim, Y.A.; Lee, Y.T.; Lee, H.S. Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides. Anal. Chim. Acta 2007, 594, 37–43. [Google Scholar]
- Kim, B.M.; Abd El-Aty, A.M.; Hwang, T.E.; Jin, L.T.; Kim, Y.S.; Shim, J.H. Development of an acetylcholinesterase-based detection kit for the determination of organophosphorus and carbamate pesticide residues in agricultural samples. Bull. Kor. Chem. Soc. 2007, 28, 929–935. [Google Scholar]
- Skladal, P. Biosensors based on cholinesterase for detection of pesticides. Food Technol. Biotechnol. 1996, 34, 43–49. [Google Scholar]
- Renault, N.J. New trends in biosensors for organophosphorus pesticides. Sensors 2001, 1, 60–74. [Google Scholar]
- Okazaki, S.; Nakagawa, H.; Fukuda, K.; Asakura, S.; Kiuchi, H.; Shigemori, T.; Takahashi, S. Reactivation of an amperometric organophosphate pesticide biosensor by 2-pyridinealdoxime methochloride. Sens. Actuat. B 2000, 66, 131–134. [Google Scholar]
- Longobardi, F.; Solfrizzo, M.; Compagnone, D.; Del Carlo, M.; Visconti, A. Use of electrochemical biosensor and gas chromatography for determination of dichlorvos in wheat. J. Agric. Food Chem. 2005, 53, 9389–9394. [Google Scholar]
- Gulla, K.C.; Gouda, M.D.; Thakur, M.S.; Karanth, N.G. Reactivation of immobilized acetyl choilnesterase in an amperometric biosensor for organophosphorus pesticide. Biochim. Biophys. Acta 2002, 1597, 133–139. [Google Scholar]
- Del Carlo, M.; Pepe, A.; De Gregorio, M.; Mascini, M.; Marty, J.L.; Fournier, D.; Visconti, A.; Compagnone, D. An electrochemical bioassay for dichlorvos analysis in durum wheat samples. J. Food Prot. 2006, 69, 1406–1411. [Google Scholar]
- Skládal, P.; Krejčí, J. Performance of the amperometricbiosensor with immobilized butyrylcholinesterase in organic solvents. Collect. Czech Chem. Commun. 1996, 61, 985–991. [Google Scholar]
- Pohanka, M.; Jun, D.; Kuca, K. Amperometric biosensor for evaluation of competitive cholinesterase inhibition by the reactivator HI-6. Anal. Lett. 2007, 40, 2351–2359. [Google Scholar]
- Ciucu, A.; Ciucu, C. Organic phase amperometric biosensor for detection of pesticides. Roum. Biotechnol. Lett. 2002, 7, 667–676. [Google Scholar]
- Suprun, E.; Evtugyn, G.; Budnikov, H.; Ricci, F.; Moscone, D.; Palleschi, G. Acetylchoinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Anal. Bioanal. Chem. 2005, 383, 597–604. [Google Scholar]
- Sotiropoulou, S.; Chaniotakis, N.A. Lowering the detection limit of the acetylcholinesterase biosensor using a nanoporous carbon matrix. Anal. Chim. Acta 2005, 530, 199–204. [Google Scholar]
- Timur, S.; Telefoncu, A. Actylcholinesterase (AChE) electrodes based on gelatin and chitosan matrices for the pesticide detection. Artif. Cells Blood Substit. Immobil. Biotechnol. 2004, 32, 427–442. [Google Scholar]
- Andreescu, S.; Marty, J.L. Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol. Eng. 2006, 23, 1–15. [Google Scholar]
- Pohanka, M.; Kuca, K.; Jun, D. Amperometric biosensor for pesticide methamidophos assay. Acta Medica 2007, 50, 239–241. [Google Scholar]
- Pohanka, M.; Treml, F.; Hubálek, M.; Banďouchová, H.; Beklová, M.; Pikula, J. Piezoelectric biosensor for a simple serological diagnosis of tularemia in infected european brown hares (Lepus europaeus). Sensors 2007, 7, 2825–2834. [Google Scholar]
- Pohanka, M.; Pavlis, O.; Skládal, P. Rapid characterization of monoclonal antibodies using the piezoelectric immunosensor. Sensors 2007, 7, 341–353. [Google Scholar]
- Pohanka, M.; Pavliš, O.; Skládal, P. Diagnosis of tularemia using piezoelectric biosensor technology. Talanta 2007, 71, 981–985. [Google Scholar]
- Vitecek, J.; Petrlova, J.; Adam, V.; Havel, L.; Kramer, K.J.; Babula, P.; Kizek, R. A fluorimetric sensor for detection of one living cell. Sensors 2007, 7, 222–238. [Google Scholar]
- Pohanka, M.; Skládal, P. Piezoelectric immunosensor for the direct and rapid detection of Francisella tularensis. Folia Microbiol. 2007, 52, 325–330. [Google Scholar]
- Pohanka, M.; Skládal, P.; Pavliš, O. A label free piezoelectric immunosensor for rapid assay of Escherichia coli. J. Immunoass. Immunochem. 2008, 29, 70–79. [Google Scholar]
- Pohanka, M.; Kuca, K.; Jun, D. Aflatoxin assay using an amperometric sensor strip and acetylcholinesterase as recognition element. Sens. Lett. 2008, 6, 450–453. [Google Scholar]
- Pohanka, M.; Jun, D.; Kalasz, H.; Kuca, K. Cholinesterase biosensor construction – a review. Protein Peptide Lett. 2008, 15, 795–798. [Google Scholar]
Immobilization procedure | in(nA) | I(%) |
---|---|---|
Simple sorption | 88±13 | 83.0 |
Glutaraldehyde cross-linking | 109±17 | 86.2 |
Glutaraldehyde and HSA cross-linking | 102±11 | 84.3 |
Capture in gelatin | 160±19 | 90.6 |
paraoxon | no (blank) | 2 pg | 20 pg | 200 pg | 2 ng | 20 ng |
mark | − | − | − | + | ++ | ++ |
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pohanka, M.; Jun, D.; Kuca, K. Amperometric Biosensors for Real Time Assays of Organophosphates. Sensors 2008, 8, 5303-5312. https://doi.org/10.3390/s8095303
Pohanka M, Jun D, Kuca K. Amperometric Biosensors for Real Time Assays of Organophosphates. Sensors. 2008; 8(9):5303-5312. https://doi.org/10.3390/s8095303
Chicago/Turabian StylePohanka, Miroslav, Daniel Jun, and Kamil Kuca. 2008. "Amperometric Biosensors for Real Time Assays of Organophosphates" Sensors 8, no. 9: 5303-5312. https://doi.org/10.3390/s8095303
APA StylePohanka, M., Jun, D., & Kuca, K. (2008). Amperometric Biosensors for Real Time Assays of Organophosphates. Sensors, 8(9), 5303-5312. https://doi.org/10.3390/s8095303