Next Article in Journal
Assessment of Organophosphate and Carbamate Pesticide Residues in Cigarette Tobacco with a Novel Cell Biosensor
Previous Article in Journal
Relative Radiometric Normalization and Atmospheric Correction of a SPOT 5 Time Series
Article Menu

Export Article

Open AccessArticle
Sensors 2008, 8(4), 2792-2817;

Relocating Sensor Nodes to Maximize Cumulative Connected Coverage in Wireless Sensor Networks

SIK University, Department of Information Technologies, Sile, 34980, Istanbul, Turkey
Received: 31 March 2008 / Accepted: 18 April 2008 / Published: 21 April 2008
Full-Text   |   PDF [243 KB, uploaded 21 June 2014]


In order to extend the availability of the wireless sensor network and to extract maximum possible information from the surveillance area, proper usage of the power capacity of the sensor nodes is important. Our work describes a dynamic relocation algorithm called MaxNetLife, which is mainly based on utilizing the remaining power of individual sensor nodes as well as properly relocating sensor nodes so that all sensor nodes can transmit the data they sense to the sink. Hence, the algorithm maximizes total collected information from the surveillance area before the possible death of the sensor network by increasing cumulative connected coverage parameter of the network. A deterministic approach is used to deploy sensor nodes into the sensor field where Hexagonal Grid positioning is used to address and locate each sensor node. Sensor nodes those are not planned to be actively used in the close future in a specific cell are preemptively relocated to the cells those will be in need of additional sensor nodes to improve cumulative connected coverage of the network. MaxNetLife algorithm also includes the details of the relocation activities, which include preemptive migration of the redundant nodes to the cells before any coverage hole occurs because of death of a sensor node. Relocation Model, Data Aggregation Model, and Energy model of the algorithm are studied in detail. MaxNetLife algorithm is proved to be effective, scalable, and applicable through simulations. View Full-Text
Keywords: wireless sensor network; mobility; clustering; network lifetime wireless sensor network; mobility; clustering; network lifetime
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Coskun, V. Relocating Sensor Nodes to Maximize Cumulative Connected Coverage in Wireless Sensor Networks. Sensors 2008, 8, 2792-2817.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top