Next Article in Journal
Assessment of Organophosphate and Carbamate Pesticide Residues in Cigarette Tobacco with a Novel Cell Biosensor
Previous Article in Journal
Relative Radiometric Normalization and Atmospheric Correction of a SPOT 5 Time Series
Open AccessArticle

Relocating Sensor Nodes to Maximize Cumulative Connected Coverage in Wireless Sensor Networks

SIK University, Department of Information Technologies, Sile, 34980, Istanbul, Turkey
Sensors 2008, 8(4), 2792-2817; https://doi.org/10.3390/s8042792
Received: 31 March 2008 / Accepted: 18 April 2008 / Published: 21 April 2008
In order to extend the availability of the wireless sensor network and to extract maximum possible information from the surveillance area, proper usage of the power capacity of the sensor nodes is important. Our work describes a dynamic relocation algorithm called MaxNetLife, which is mainly based on utilizing the remaining power of individual sensor nodes as well as properly relocating sensor nodes so that all sensor nodes can transmit the data they sense to the sink. Hence, the algorithm maximizes total collected information from the surveillance area before the possible death of the sensor network by increasing cumulative connected coverage parameter of the network. A deterministic approach is used to deploy sensor nodes into the sensor field where Hexagonal Grid positioning is used to address and locate each sensor node. Sensor nodes those are not planned to be actively used in the close future in a specific cell are preemptively relocated to the cells those will be in need of additional sensor nodes to improve cumulative connected coverage of the network. MaxNetLife algorithm also includes the details of the relocation activities, which include preemptive migration of the redundant nodes to the cells before any coverage hole occurs because of death of a sensor node. Relocation Model, Data Aggregation Model, and Energy model of the algorithm are studied in detail. MaxNetLife algorithm is proved to be effective, scalable, and applicable through simulations. View Full-Text
Keywords: wireless sensor network; mobility; clustering; network lifetime wireless sensor network; mobility; clustering; network lifetime
MDPI and ACS Style

Coskun, V. Relocating Sensor Nodes to Maximize Cumulative Connected Coverage in Wireless Sensor Networks. Sensors 2008, 8, 2792-2817. https://doi.org/10.3390/s8042792

AMA Style

Coskun V. Relocating Sensor Nodes to Maximize Cumulative Connected Coverage in Wireless Sensor Networks. Sensors. 2008; 8(4):2792-2817. https://doi.org/10.3390/s8042792

Chicago/Turabian Style

Coskun, Vedat. 2008. "Relocating Sensor Nodes to Maximize Cumulative Connected Coverage in Wireless Sensor Networks" Sensors 8, no. 4: 2792-2817. https://doi.org/10.3390/s8042792

Find Other Styles

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Search more from Scilit
 
Search
Back to TopTop