NO2 Detection Using Microcantilever Based Potentiometry
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Transition metal oxides
3.2. Carbon based nano-materials
3.3. Simultaneous Amperometric and Potentiometric Measurements
4. Conclusions
Acknowledgments
References and Notes
- Mandeles, A.; Christofides, C. Physics, Chemistry and Technology of Solid State Gas Sensor Devices; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Please refer to http://www.epa.gov
- Francioso, L.; Forleo, A.; Capone, S.; Epifani, M.; Taurino, A.M.; Siciliano, P. Nanostructured In2O3–SnO2 sol–gel thin film as material for NO2 detection. Sens. Actuat. B 2006, 114, 646–655. [Google Scholar]
- Cui, Y.; Wei, W.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective Detection of biological and chemical species. Science 2001, 293, 1289–1292. [Google Scholar]
- Koley, G.; Qazi, M.; Lakshmanan, L.; Thundat, T.G. Gas sensing using electrostatic force potentiometry. Appl. Phys. Lett. 2007, 90, 173105:1–3. [Google Scholar]
- Qazi, M.; Koley, G.; Park, S.; Vogt, T. NO2detection by adsorption induced work function changes in In2O3thin films. Appl. Phys. Lett. 2007, 91, 043113:1–3. [Google Scholar]
- Hu, Z.; Thundat, T.; Warmack, R.J. Investigation of adsorption and absorption-induced stresses using microcantilever sensors. J. Appl. Phys. 2001, 90, 427–431. [Google Scholar]
- Huang, X.M.H.; Manolidis, M.; Jun, S.C.; Hone, J. Nanomechanical hydrogen sensing. Appl. Phys. Lett. 2005, 86, 143104:1–3. [Google Scholar]
- Patel, S.V.; Mlsna, T.E.; Fruhberger, B.; Klaassen, E.; Cemalovic, S.; Baselt, D.R. Chemicapacitive microsensors for volatile organic compound detection. Sens. Actuat. B 2003, 96, 541–553. [Google Scholar]
- Feng, P.; Xue, X.Y.; Liu, Y.G.; Wang, T.H. Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact. Appl. Phys. Lett. 2006, 89, 243514:1–243514:3. [Google Scholar]
- Pinnaduwage, L.A.; Boiadjiev, V.; Hawk, J.E.; Thundat, T. Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers. Appl. Phys. Lett. 2003, 83, 1471:1–3. [Google Scholar]
- Pinnaduwage, L.A.; Gehl, A.; Hedden, D.L.; Muralidharan, G.; Thundat, T.; Lareau, R.T.; Sulchek, T.; Manning, L.; Rogers, B.; Jones, M.; Adams, J.D. A microsensor for trinitrotoluene vapor. Nature 2003, 425–474. [Google Scholar]
- Fritz, J.; Baller, M.K.; Lang, H.P.; Rothuizen, H.; Vettiger, P.; Meyer, E.; Güntherodt, H.J.; Gerber, C.; Gimzewski, J.K. Translating biomolecular recognition into nanomechanics. Science 2000, 288, 316–318. [Google Scholar]
- Carrascosa, L.G.; Moreno, M.; Alvarez, M.; Lechuga, L.M. Nanomechanical biosensors: a new sensing tool. Trends Anal. Chem. 2006, 25, 196–206. [Google Scholar]
- Goeders, K.M.; Colton, J.S.; Bottomley, L.A. Microcantilevers: Sensing Chemical Interactions via Mechanical Motion. Chem. Rev. 2008, 108, 522–542. [Google Scholar]
- Gurlo, A.; Barsan, N.; Ivanovskaya, M.; Weimar, U.; Gopel, W. In2O3 and MoO3-In2O3 thin film semiconductor sensors: interaction with NO2 and O3. Sens. Actuat. B 1998, 47, 92–99. [Google Scholar]
- Becker, T.; Muhlberger, S.; Braunmuhl, C.; Muller, G.; Ziemann, T.; Hechtenberg, K. V. Air pollution monitoring using tin-oxide-based microreactor systems. Sens. Actuat. B 2000, 69, 108–119. [Google Scholar]
- Sberveglieri, G.; Depero, L.; Groppelli, S.; Nelli, P. WO3 sputtered thin-films for NOx monitoring. Sens. Actuat. B 1995, 26, 89–92. [Google Scholar]
- Zabel, H.; Solin, S. A. Graphite Intercalation Compounds II: Transport and Electronic Properties; Springer-Verlag: New York, NY, USA, 1992. [Google Scholar]
- Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science 2000, 287, 1801–1804. [Google Scholar]
- Kong, L.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube Molecular Wires as Chemical Sensors. Science 2000, 287, 622–625. [Google Scholar]
- Ng, H.T.; Li, J.; Smith, M.K.; Nguyen, P.; Cassell, A.; Han, J.; Meyyappan, M. Growth of epitaxial nanowires at the junctions of nanowalls. Science 2003, 300, 1249. [Google Scholar]
- Li, J.; Lu, Y.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003, 3, 929–933. [Google Scholar]
- Novoselov, K.S.; Geim, A. K.; Mozorov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.; Blake, P.; Katsnelson, M.I.; Novoselov, K. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar]
- Ostrick, B.; Pohle, R.; Fleischer, M.; Meixner, H. TiN in work function type sensors: a stable ammonia sensitive material for room temperature operation with low humidity cross sensitivity. Sens. Actuat. B 2000, 68, 243–239. [Google Scholar]
- Koley, G.; Spencer, M.G. Surface potential measurements on GaN and AlGaN/GaN heterostructures by scanning Kelvin probe microscopy. J. Appl. Phys. 2001, 90, 337–344. [Google Scholar]
- Park, S.; Herman, G.S.; Keszler, D.A. Oxide films: low-temperature deposition and crystallization. J. Solid State Chem. 2003, 175, 84–87. [Google Scholar]
- Ni, H.; Li, X. Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 2006, 17, 3591–3597. [Google Scholar]
- Sasaki, N.; Tsukada, M. The relation between resonance curves and tip-surface interaction potential in noncontact atomic-force microscopy. Jpn. J. Appl. Phys. 1998, 37, L533–535. [Google Scholar]
- Eranna, G.G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide meterials for development of integrated gas sensors- a comprehensive review. Crit. Rev. Solid State Mater. Sci. 2004, 29, 111–188. [Google Scholar]
- Fan, Z.; Lu, J.G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, 86, 123510:1–3. [Google Scholar]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 61, 14095–14107. [Google Scholar]
- Chandrashekhar, M.V.S.; Qazi, M.; Lu, J.; Koley, G.; Spencer, M. Large area nanocrystalline graphite films on SiC for gas sensing applications. Proceedings of IEEE Sensors Conferences, Atlanta, GA, USA, Oct. 2007; pp. 558–561.
- Qazi, M.; Vogt, T.; Koley, G. Trace gas sensing using nanostructured graphite layers. Appl. Phys. Lett. 2007, 91, 233101:1–3. [Google Scholar]
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Qazi, M.; Koley, G. NO2 Detection Using Microcantilever Based Potentiometry. Sensors 2008, 8, 7144-7156. https://doi.org/10.3390/s8117144
Qazi M, Koley G. NO2 Detection Using Microcantilever Based Potentiometry. Sensors. 2008; 8(11):7144-7156. https://doi.org/10.3390/s8117144
Chicago/Turabian StyleQazi, Muhammad, and Goutam Koley. 2008. "NO2 Detection Using Microcantilever Based Potentiometry" Sensors 8, no. 11: 7144-7156. https://doi.org/10.3390/s8117144
APA StyleQazi, M., & Koley, G. (2008). NO2 Detection Using Microcantilever Based Potentiometry. Sensors, 8(11), 7144-7156. https://doi.org/10.3390/s8117144