Next Article in Journal / Special Issue
A New Composition for Co(II)-porphyrin-based Membranes Used in Thiocyanate-selective Electrodes
Previous Article in Journal / Special Issue
Nucleoside Sensing
 
 
Article

Anodic Oxidation and Amperometric Sensing of Hydrazine at a Glassy Carbon Electrode Modified with Cobalt (II) Phthalocyanine–cobalt (II) Tetraphenylporphyrin (CoPc- (CoTPP)4) Supramolecular Complex

Chemistry Department, University of Pretoria, Pretoria 0002, South Africa
Sensors 2006, 6(8), 874-891; https://doi.org/10.3390/s6080874
Received: 11 April 2006 / Accepted: 8 June 2006 / Published: 24 August 2006
(This article belongs to the Special Issue Supramolecular Sensors)
This paper describes the electrocatalytic behaviour of a glassy carbon electrode (GCE)modified with cobalt(II)phthalocyanine (CoPc) complex peripherally tetrasubstituted withcobalt(II)tetraphenylporphyrin (CoTPP) complexes via ether linkages (i.e., CoPc-(CoTPP)4). Thefeatures of the immobilised pentamer were interrogated with cyclic voltammetry andelectrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3-/4- as redox probe revealedenhanced electron transfer properties with kapp ≈ 18 x 10-6 cms-1 compared to that of the bareGCE (4.7 x 10-6 cms-1). The viability of this supramolecular complex as a redox mediator for theanodic oxidation and sensitive amperometric determination of hydrazine in alkaline conditions isdescribed. The electrocatalytic oxidation of hydrazine by GCE-CoPc-(CoTPP)4 was characterisedwith satisfactory catalytic current response with low non-Faradaic current (ca. 30 times lowerthan the bare GCE) and at much lower oxidation potential (ca. 300 mV lower than the bareGCE). A mechanism for the studied electrocatalytic reaction was proposed based on thespectrophotometric evidence that revealed the major involvement of the Co(III)/Co(II) redox coupleof the central CoPc species rather than the CoTPP component of the pentamer. Rate constant forthe anodic oxidation of hydrazine was estimated from chronoamperometry as ~ 3x103 M-1s-1. Theproposed amperometric sensor displayed excellent charateristics towards the determination ofhydrazine in 0.2 M NaOH ; such as low overpotentials ( 100 mV vs Ag|AgCl), very fastamperometric response time (1 s), linear concentration range of up to 230 μM, with micromolardetection limit, high sensitivity and stability. View Full-Text
Keywords: Cobalt(II)phthalocyanine-cobalt(II)tetraphenylporphyrin pentamer ; Electrochemical Cobalt(II)phthalocyanine-cobalt(II)tetraphenylporphyrin pentamer ; Electrochemical
Show Figures

MDPI and ACS Style

Ozoemena, K.I. Anodic Oxidation and Amperometric Sensing of Hydrazine at a Glassy Carbon Electrode Modified with Cobalt (II) Phthalocyanine–cobalt (II) Tetraphenylporphyrin (CoPc- (CoTPP)4) Supramolecular Complex. Sensors 2006, 6, 874-891. https://doi.org/10.3390/s6080874

AMA Style

Ozoemena KI. Anodic Oxidation and Amperometric Sensing of Hydrazine at a Glassy Carbon Electrode Modified with Cobalt (II) Phthalocyanine–cobalt (II) Tetraphenylporphyrin (CoPc- (CoTPP)4) Supramolecular Complex. Sensors. 2006; 6(8):874-891. https://doi.org/10.3390/s6080874

Chicago/Turabian Style

Ozoemena, Kenneth I. 2006. "Anodic Oxidation and Amperometric Sensing of Hydrazine at a Glassy Carbon Electrode Modified with Cobalt (II) Phthalocyanine–cobalt (II) Tetraphenylporphyrin (CoPc- (CoTPP)4) Supramolecular Complex" Sensors 6, no. 8: 874-891. https://doi.org/10.3390/s6080874

Find Other Styles

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop