Colorimetric Determination of Peroxides: A New Paper-Based Sensor for Detecting Hexamethylene Triperoxide Diamine (HMTD)
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Fabrication of Sensors
3.2. Colorimetric Determination of Peroxides
3.2.1. The Usage of Commercial Starch-Iodometric Test
3.2.2. The Usage of Homemade Starch-Iodometric Test
3.2.3. Colorimetric Determination of Peroxides Using Novel Colorimetric Reaction
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duquet, N. Armed to Kill—An Exploratory Analysis of the Guns Used in Public Mass Shootings in Europe; Flemish Peace Institute: Brussels, Belgium, 2016. [Google Scholar]
- Wojtasik, K. Analysis of the bombers tactics and the consequences of a series of terrorist attacks in Brussels. Przegląd Policyjny 2021, 140, 135–153. [Google Scholar] [CrossRef]
- Schulte-Ladbeck, R.; Edelmann, A.; Quintás, G.; Lendl, B.; Karst, U. Determination of Peroxide-Based Explosives Using Liquid Chromatography with On-Line Infrared Detection. Anal. Chem. 2006, 78, 8150–8155. [Google Scholar] [CrossRef]
- Stambouli, A.; El Bouri, A.; Bouayoun, T.; Bellimam, M.A. Headspace-GC/MS detection of TATP traces in post-explosion debris. Forensic Sci. Int. 2004, 146, S191–S194. [Google Scholar] [CrossRef]
- Krawczyk, T.; Baj, S. Review: Advances in the Determination of Peroxides by Optical and Spectroscopic Methods. Anal. Lett. 2014, 47, 2129–2147. [Google Scholar] [CrossRef]
- Wackerbarth, H.; Salb, C.; Gundrum, L.; Niederkrüger, M.; Christou, K.; Beushausen, V.; Viöl, W. Detection of explosives based on surface-enhanced Raman spectroscopy. Appl. Opt. 2010, 49, 4362. [Google Scholar] [CrossRef]
- To, K.C.; Ben-Jaber, S.; Parkin, I.P. Recent Developments in the Field of Explosive Trace Detection. ACS Nano 2020, 14, 10804–10833. [Google Scholar] [CrossRef]
- Choi, H.-R.; Son, C.E.; Choi, S.-S. Rapid detection of explosives in collected dust using ion mobility spectrometry. Microchem. J. 2024, 203, 110882. [Google Scholar] [CrossRef]
- DeTata, D.A.; Fillingham, R.M.; D’Uva, J. Explosives: Overview. In Encyclopedia of Forensic Sciences, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 356–390. [Google Scholar] [CrossRef]
- Maziejuk, M.; Szyposzyńska, M.; Spławska, A.; Wiśnik-Sawka, M.; Ceremuga, M. Detection of Triacetone Triperoxide (TATP) and Hexamethylene Triperoxide Diamine (HMTD) from the Gas Phase with Differential Ion Mobility Spectrometry (DMS). Sensors 2021, 21, 4545. [Google Scholar] [CrossRef] [PubMed]
- Burks, R.M.; Hage, D.S. Current trends in the detection of peroxide-based explosives. Anal. Bioanal. Chem. 2009, 395, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, H.; Huang, W.; Chen, C.; Xu, C.; Ruan, H.; Li, B.; Li, H. Recent development and trends in the detection of peroxide-based explosives. Talanta 2023, 264, 124763. [Google Scholar] [CrossRef]
- Almog, J.; Zitrin, S. Colorimetric Detection of Explosives. In Aspects of Explosives Detection; Elsevier: Amsterdam, The Netherlands, 2009; pp. 41–58. [Google Scholar] [CrossRef]
- Singh, S. Sensors—An effective approach for the detection of explosives. J. Hazard. Mater. 2007, 144, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Paul, T.; Choudhury, D.R.; Ghosh, D.; Saha, C. Advancements in optical sensors for explosive materials Identification: A comprehensive review. Results Chem. 2024, 8, 101602. [Google Scholar] [CrossRef]
- Erçağ, E.; Üzer, A.; Apak, R. Selective spectrophotometric determination of TNT using a dicyclohexylamine-based colorimetric sensor. Talanta 2009, 78, 772–780. [Google Scholar] [CrossRef]
- Wang, C.; Huang, H.; Bunes, B.R.; Wu, N.; Xu, M.; Yang, X.; Yu, L.; Zang, L. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor. Sci. Rep. 2016, 6, 25015. [Google Scholar] [CrossRef]
- Liu, R.; Li, Z.; Huang, Z.; Li, K.; Lv, Y. Biosensors for explosives: State of art and future trends. TrAC Trends Anal. Chem. 2019, 118, 123–137. [Google Scholar] [CrossRef]
- Caygill, J.S.; Davis, F.; Higson, S.P.J. Current trends in explosive detection techniques. Talanta 2012, 88, 14–29. [Google Scholar] [CrossRef]
- Shi, L.; Huang, H.; Bunes, B.R.; Wu, N.; Xu, M.; Yang, X.; Yu, L.; Zang, L. Highly sensitive fluorescent explosives detection via SERS: Based on fluorescence quenching of graphene oxide@Ag composite aerogels. Anal. Methods 2024, 16, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Glackin, J.M.E.; Gillanders, R.N.; Eriksson, F.; Fjällgren, M.; Engblom, J.; Mohammed, S.; Samuel, I.D.W.; Turnbull, G.A. Explosives detection by swabbing for improvised explosive devices. Analyst 2020, 145, 7956–7963. [Google Scholar] [CrossRef]
- Apak, R.; Üzer, A.; Sağlam, Ş.; Arman, A. Selective Electrochemical Detection of Explosives with Nanomaterial Based Electrodes. Electroanalysis 2023, 35, e202200175. [Google Scholar] [CrossRef]
- Arman, A.; Sağlam, Ş.; Üzer, A.; Apak, R. A novel electrochemical sensor based on phosphate-stabilized poly-caffeic acid film in combination with graphene nanosheets for sensitive determination of nitro-aromatic energetic materials. Talanta 2024, 266, 125098. [Google Scholar] [CrossRef]
- Kangas, M.J.; Burks, R.M.; Atwater, J.; Lukowicz, R.M.; Williams, P.; Holmes, A.E. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives. Crit. Rev. Anal. Chem. 2017, 47, 138–153. [Google Scholar] [CrossRef]
- Apak, R.; Çekiç, S.D.; Üzer, A.; Çapanoğlu, E.; Çelik, S.E.; Bener, M.; Can, Z.; Durmazel, S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. Anal. Methods 2020, 12, 5266–5321. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical Sensing of Explosives. Electroanalysis 2007, 19, 415–423. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. [Google Scholar] [CrossRef] [PubMed]
- Carrilho, E.; Martinez, A.W.; Whitesides, G.M. Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Anal. Chem. 2009, 81, 7091–7095. [Google Scholar] [CrossRef]
- Morbioli, G.G.; Mazzu-Nascimento, T.; Stockton, A.M.; Carrilho, E. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)—A review. Anal. Chim. Acta 2017, 970, 1–22. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, L.; Jarujamrus, P.; Doery, J.C.G.; Shen, W. Improvement strategies on colorimetric performance and practical applications of Paper-based analytical devices. Microchem. J. 2022, 180, 107562. [Google Scholar] [CrossRef]
- Ghasemi, F.; Fahimi-Kashani, N.; Bigdeli, A.; Alshatteri, A.H.; Abbasi-Moayed, S.; Al-Jaf, S.H.; Merry, M.Y.; Omer, K.M.; Hormozi-Nezhad, M.R. Paper-based optical nanosensors—A review. Anal. Chim. Acta 2023, 1238, 340640. [Google Scholar] [CrossRef]
- Feigl, F. Spot Tests in Organic Analysis, 7th ed.; Elsevier: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Jungreis, E. Spot test analysis: Clinical, environmental, forensic, and geochemical applications. In Chemical Analysis, 2nd ed.; Wiley: Weinheim, Germany, 1997. [Google Scholar]
- Doménech-Carbó, M.T.; Doménech-Carbó, A. Spot tests: Past and present. ChemTexts 2021, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.L.; Corbin, I.; Kaufman, L.M.; Zreibe, K.; Blanes, L.; McCord, B.R. Simultaneous colorimetric detection of improvised explosive compounds using microfluidic paper-based analytical devices (μPADs). Anal. Methods 2015, 7, 63–70. [Google Scholar] [CrossRef]
- Musile, G.; Agard, Y.; Wang, L.; De Palo, E.F.; McCord, B.; Tagliaro, F. Paper-based microfluidic devices: On-site tools for crime scene investigation. TrAC Trends Anal. Chem. 2021, 143, 116406. [Google Scholar] [CrossRef]
- Gonzalez, C.M.; Iqbal, M.; Dasog, M.; Piercey, D.G.; Lockwood, R.; Klapötke, T.M.; Veinot, J.G.C. Detection of high-energy compounds using photoluminescent silicon nanocrystal paper based sensors. Nanoscale 2014, 6, 2608–2612. [Google Scholar] [CrossRef]
- Wolffenstein, R. Action of hydrogen peroxide on acetone and mesityl oxide. Ber. Dtsch. Chem. Ges. 1895, 28, 2265–2269. [Google Scholar] [CrossRef]
- Legler, L. Ueber Producte der langsamen Verbrennung des Aethyläthers. Ber. Dtsch. Chem. Ges. 1885, 18, 3343–3351. [Google Scholar] [CrossRef]
- Schulte-Ladbeck, R.; Vogel, M.; Karst, U. Recent methods for the determination of peroxide-based explosives. Anal. Bioanal. Chem. 2006, 386, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Fuentes, E.A.; Peña-Quevedo, A.J.; Pacheco-Londoño, L.C.; Infante-Castillo, R.; Hernández-Rivera, S.P. A Review of Peroxide Based Homemade Explosives: Characterization and Detection. In Chemistry Research Summaries: Chemical Engineering Methods and Technology Series; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011. [Google Scholar]
- Michel, P.; Boudenne, J.-L.; Robert-Peillard, F.; Coulomb, B. Analysis of homemade peroxide-based explosives in water: A review. TrAC Trends Anal. Chem. 2023, 158, 116884. [Google Scholar] [CrossRef]
- Tsaplev, Y.B. Decomposition of cyclic acetone peroxides in acid media. Kinet. Catal. 2012, 53, 521–524. [Google Scholar] [CrossRef]
- Munoz, R.A.A.; Lu, D.; Cagan, A.; Wang, J. “One-step” simplified electrochemical sensing of TATP based on its acid treatment. Analyst 2007, 132, 560–565. [Google Scholar] [CrossRef]
- Girotti, S.; Ferri, E.; Maiolini, E.; Bolelli, L.; D’eLia, M.; Coppe, D.; Romolo, F.S. A quantitative chemiluminescent assay for analysis of peroxide-based explosives. Anal. Bioanal. Chem. 2011, 400, 313–320. [Google Scholar] [CrossRef]
- Mahbub, P.; Zakaria, P.; Guijt, R.; Macka, M.; Dicinoski, G.; Breadmore, M.; Nesterenko, P.N. Flow injection analysis of organic peroxide explosives using acid degradation and chemiluminescent detection of released hydrogen peroxide. Talanta 2015, 143, 191–197. [Google Scholar] [CrossRef]
- Gökdere, B.; Üzer, A.; Durmazel, S.; Erçağ, E.; Apak, R. Titanium dioxide nanoparticles–based colorimetric sensors for determination of hydrogen peroxide and triacetone triperoxide (TATP). Talanta 2019, 202, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Ladbeck, R.; Kolla, P.; Karst, U. A field test for the detection of peroxide-based explosives. Analyst 2002, 127, 1152–1154. [Google Scholar] [CrossRef]
- Schulte-Ladbeck, R.; Kolla, P.; Karst, U. Trace Analysis of Peroxide-Based Explosives. Anal. Chem. 2003, 75, 731–735. [Google Scholar] [CrossRef]
- Lu, D.; Cagan, A.; Munoz, R.A.A.; Tangkuaram, T.; Wang, J. Highly sensitive electrochemical detection of trace liquid peroxide explosives at a Prussian-blue “artificial-peroxidase” modified electrode. Analyst 2006, 131, 1279. [Google Scholar] [CrossRef] [PubMed]
- Sağlam, Ş.; Üzer, A.; Apak, R. Direct Determination of Peroxide Explosives on Polycarbazole/Gold Nanoparticle-Modified Glassy Carbon Sensor Electrodes Imprinted for Molecular Recognition of TATP and HMTD. Anal. Chem. 2022, 94, 17662–17669. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Cheng, I.F. Selective and rapid detection of triacetone triperoxide by double-step chronoamperometry. Microchem. J. 2010, 94, 166–170. [Google Scholar] [CrossRef]
- Jangi, S.R.H.; Akhond, M.; Absalan, G. A field-applicable colorimetric assay for notorious explosive triacetone triperoxide through nanozyme-catalyzed irreversible oxidation of 3, 3′-diaminobenzidine. Microchim. Acta 2020, 187, 431. [Google Scholar] [CrossRef]
- Lin, H.; Suslick, K.S. A Colorimetric Sensor Array for Detection of Triacetone Triperoxide Vapor. J. Am. Chem. Soc. 2010, 132, 15519–15521. [Google Scholar] [CrossRef]
- Liu, M.-M.; Lian, X.; Liu, H.; Guo, Z.-Z.; Huang, H.-H.; Lei, Y.; Peng, H.-P.; Chen, W.; Lin, X.-H.; Liu, A.-L.; et al. A colorimetric assay for sensitive detection of hydrogen peroxide and glucose in microfluidic paper-based analytical devices integrated with starch-iodide-gelatin system. Talanta 2019, 200, 511–517. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, F.; Zhou, F.; Xu, Z.; Xu, H.; Ruan, X. Determination of hydrogen peroxide using novel test strips based on plastic microcapillary film. Anal. Methods 2017, 9, 3230–3236. [Google Scholar] [CrossRef]
- Xu, Y.; Enomae, T. Paper substrate modification for rapid capillary flow in microfluidic paper-based analytical devices. RSC Adv. 2014, 4, 12867–12872. [Google Scholar] [CrossRef]
- Ota, R.; Yamada, K.; Suzuki, K.; Citterio, D. Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs). Analyst 2018, 143, 643–653. [Google Scholar] [CrossRef]
- Harris, D.C. Quantitative Chemical Analysis, 7th ed.; W. H. Freeman and Company: New York, NY, USA, 2007. [Google Scholar]
- Precision Laboratories, Potassium Iodide Starch SDS. Available online: https://www.preclaboratories.com/wp-content/uploads/2023/02/160-Potassium-Iodide-Starch-Test-Paper-SDS.pdf (accessed on 22 December 2025).
- Salles, M.O.; Meloni, G.N.; De Araujo, W.R.; Paixão, T.R.L.C. Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Anal. Methods 2014, 6, 2047–2052. [Google Scholar] [CrossRef]
- Yushu, L.; Huaiyu, C.; Xincun, D. 2019 ‘One-Step Rapid Colorimetric Detection Method for Peroxide Explosives’ CN110749592A. Available online: https://patents.google.com/patent/CN110749592A/en (accessed on 12 January 2026).
- Trigit—Color in Digits. Available online: https://trigit.com.au/ (accessed on 22 December 2025).
- Tjandra, A.D.; Heywood, T.; Chandrawati, R. Trigit: A free web application for rapid colorimetric analysis of images. Biosens. Bioelectron. X 2023, 14, 100361. [Google Scholar] [CrossRef]
- Qu, Y.; Chen, T.; Xu, Y. Selective and smart dual-channel colorimetric sulfur ion sensing readout platform. Sens. Actuators B Chem. 2023, 392, 134060. [Google Scholar] [CrossRef]
- Fan, W.; Guo, L.; Qu, Y.; Zhuang, Q.; Wang, Y. Copper-crosslinked carbon dot hydrogel nanozyme for colorimetric—Tert-butylhydroquinone biosensing and smartphone-assisted visual ratiometric assay. J. Hazard. Mater. 2024, 468, 133795. [Google Scholar] [CrossRef] [PubMed]








| This Work | [61] | [62] | |
|---|---|---|---|
| detected peroxide | HMTD | HMTD, TATP | TATP |
| sensor used | wax printed paper-based sensor | wax printed paper-based sensor | unspecified container for liquid reagents |
| response time | 1 min | at least 5 min up to 15 min | no data |
| detection method | ‘naked eye’ | image analysis (developed iOS application) | ‘naked eye’ |
| reagents | -potassium iodide -citric acid | -potassium iodide -hydrochloride acid | -potassium iodide -sulfuric acid |
| LOD | HMTD: 0.01 mg/mL | tested concentrations: HMTD: 2.1 mg/mL TATP: 2.2 mg/mL | TATP: 0.1 mg/mL |
| selectivity | Sensor insensitive to TATP, TNT, DNT, RDX, HMX and PA | Different color for TATP, sensor insensitive to NB, 4A2NP and PA | no data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Furmanek, W.; Lastivka, V.; Kasprzak, P.; Mazur, I.; Baran, P.A.; Pniewski, W.; Kukiełczyński, Ł.; Koszytkowska-Stawińska, M.; Grabowska-Jadach, I.; Chudy, M.; et al. Colorimetric Determination of Peroxides: A New Paper-Based Sensor for Detecting Hexamethylene Triperoxide Diamine (HMTD). Sensors 2026, 26, 904. https://doi.org/10.3390/s26030904
Furmanek W, Lastivka V, Kasprzak P, Mazur I, Baran PA, Pniewski W, Kukiełczyński Ł, Koszytkowska-Stawińska M, Grabowska-Jadach I, Chudy M, et al. Colorimetric Determination of Peroxides: A New Paper-Based Sensor for Detecting Hexamethylene Triperoxide Diamine (HMTD). Sensors. 2026; 26(3):904. https://doi.org/10.3390/s26030904
Chicago/Turabian StyleFurmanek, Wiktoria, Viktoriia Lastivka, Piotr Kasprzak, Izabela Mazur, Piotr Andrzej Baran, Wawrzyniec Pniewski, Łukasz Kukiełczyński, Mariola Koszytkowska-Stawińska, Ilona Grabowska-Jadach, Michał Chudy, and et al. 2026. "Colorimetric Determination of Peroxides: A New Paper-Based Sensor for Detecting Hexamethylene Triperoxide Diamine (HMTD)" Sensors 26, no. 3: 904. https://doi.org/10.3390/s26030904
APA StyleFurmanek, W., Lastivka, V., Kasprzak, P., Mazur, I., Baran, P. A., Pniewski, W., Kukiełczyński, Ł., Koszytkowska-Stawińska, M., Grabowska-Jadach, I., Chudy, M., Tokarska, K., Żukowski, K., & Dybko, A. (2026). Colorimetric Determination of Peroxides: A New Paper-Based Sensor for Detecting Hexamethylene Triperoxide Diamine (HMTD). Sensors, 26(3), 904. https://doi.org/10.3390/s26030904

