Paper-Based Analytical Devices Coupled with Fluorescence Detection and Smartphone Imaging: Advances and Applications
Abstract
1. Introduction
2. Fundamentals of PADs
2.1. Structure and Materials of PADs
2.2. Fabrication Techniques
2.3. Optical Compatibility and Background Minimization
3. Applications
3.1. Bioanalysis
3.2. Food Analysis
| Analyte | Sample | Method Principle | λex (nm) | LOD | Color Processing Application | Ref |
|---|---|---|---|---|---|---|
| TC | Foodstuffs | Ratiometric fluorescence using dye@UiO-66 as internal reference and Eu3+ complex as signal unit; TC enhances Eu3+ fluorescence (blue → red) | – | 17.9 nM | RGB analysis by smartphone | [39] |
| Sulfite | Apple cider vinegar, lime juice, sour orange juice | Acidification converts sulfite to SO2; SO2 reduces Fe(III) to Fe(II) forming red Fe(II)–phenanthroline complex | – | 0.04 ppb | RGB analyzer software for Android | [40] |
| E. coli | Degrease milk, tap water | Cu2+-OPD system; bacteria reduce Cu2+ suppressing oxidation of OPD; fluorescence & colorimetry dual-readout | 414 | 44 CFU/mL, 100 CFU/mL | Smartphone-assisted RGB analysis | [41] |
| Nitroxynil | Milk, Beef | Flavone dye–albumin fluorescent probe; visible fluorescence color change | 410 | 107 nM | ColorDesk Pro, ver 1.2.5 | [42] |
| Total phenolic compounds | Honeysuckle extracts | CQDs fluorescence quenching by phenolics | 365 | 0.213–0.287 mg/mL | Color Grab app (v3.3.0) | [44] |
| Borax | Bean, flour, meat | Morin fluorescence “turn-on” in presence of borax | 460 | 1.07 µM (fluorimetry); 0.13 mM (paper) | ImageJ | [45] |
| Doxorubicin | Milk | Interaction with BSA–Cu nanoclusters enhancing fluorescence | 365 | 45 nM | Color Recognizer APP | [46] |
| β-Lactoglobulin | Milk, cookies, chocolate, rice | Aptamer–CQD fluorescent probe in microfluidic PAD | 365 | 0.6 ng/mL | ArtCAM JewelSmith 2011 | [47] |
| o,o-Dimethyl-o-2,2-dichlorovinyl phosphate | Apple, tomato | CuS nanoparticles with peroxidase-like activity, fluorimetric sensing | 540 | 0.1 ng/mL | Color Picker app | [48] |
| 2,4-D (2,4-dichlorophenoxyacetic acid) | Vegetables | Multi-emission fluorescence system based on enzyme inhibition and OPD reactions | 365 | 5.0 µg/L | Color recognition | [49] |
| Quinine | Tonic water | Native fluorescence of quinine on PAD after pH adjustment | 360 | 3.6 mg/L | ImageJ | [50] |
| Histamine | Canned tuna | MIP extraction + microfluidic PAD, color ratio measurement | 360 | 7.99 ppm | Color Analyzer | [51] |
| Sulfamethazine, oxytetracycline, chloramphenicol | Shrimp | Aptamer–CDs/MoS2 FRET “off–on” fluorescence | 365 | 0.34–0.48 ng/mL | - | [53] |
| Methiocarb | Cauliflower, cabbage | Reaction with nitrogen-doped carbon quantum dot (N-CQDs) | 450 | 0.35 ng/mL | ImageJ | [54] |
| Iodate | Food/water | Fluorescence quenching of BSA–Au nanoclusters with gas separation PAD | 490 | 0.005 mM (fluorimetric), 0.01 mM (image) | ImageJ | [55] |
| Oxytetracycline | Milk | Eu(III)/CDs ratiometric fluorescence on paper | 310 | 25 nM | Maarten Zonneveld app | [56] |
| Cu2+ | Sugar cane spirits | Rice-derived CDs functionalized with cuprizone | 370 | 0.23 ppm | Color name app | [57] |
| Folic acid | Celery, Broad bean, lettuce, citrus, pear, kiwi, yolk | Reaction with gadolinium and nitrogen co-doped CDs | 340 | 3.43 nM | Color Coll app | [58] |
| β-Lactoglobulin | Milk, cookies, rice porridge | QD–aptamer–graphene oxide coffee-ring fluorescence quenching | – | 48 ppb | ImageJ | [59] |
| Benzoyl peroxide | Wheat flour, noodles, baking powder | Oxidation of phenothiazine dye (red → yellow), fluorescence turn-on | 454 | 257 nM | Color Picker | [60] |
| Fluoroquinolones | Milk | Eu-MOF fluorescence & color change (IFE + PET mechanisms) | 360 | 9.3–238.6 nM | - | [61] |
| Pd2+ | Chinese mitten crab, Silver carp, Whiteleg shrimp, Procambarus clarkii, squid, Cuttlefish balls | Aptamer–ZnSe@ZnS QD fluorescence quenching | 386 | 0.56 nM | ImageJ | [62] |
| Aflatoxin B1 | corn, rice and peanut | Dye@MOF turn-on ratiometric fluorescence | 330 | 4.16 nM | - | [63] |
| Glyphosate, malathion, acetamiprid | Matcha powder, black tea, | Multichannel PAD biosensor with cloud & smartphone imaging | 980 | 0.285–0.493 ng/mL | Smartphone + cloud platform | [64] |
| Glutathione | Nutritional supplements | Direct fluorimetry on PAD after OPD derivatization | 365 | 20.5 μM | ImageJ | [65] |
| Glutathione | Dietary supplements | Reaction with o-phthaldialdehyde functionalized silica particles | 340 | 0.34 μM | - | [66] |
| Sodium hypochlorite, hydrogen peroxide and formaldehyde | Milk | Reaction with 8 different nanoclusters | 280–360 | 0.01–0.05% | ImageJ | [67] |
| Quercetin | Orange juice, tea | Fluorimetric detection after magnetic MIP extraction | 430 | 1.1 ng/mL | - | [68] |
3.3. Environmental Analysis
3.4. Pharmaceutical Analysis
3.5. Others
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CD | Carbon dot |
| CQDs | Carbon quantum dot |
| FRET | Fluorescence resonance energy transfer |
| FTIR | Fourier transform infrared |
| IFE | Inner filter effect |
| LOD | Limit of detection |
| LOQ | Limit of quantitation |
| MIP | Molecularly imprinted polymer |
| MOF | Metal–organic framework |
| NCPs | Nanoscale coordination polymers |
| NIR | Near-infrared |
| PAD | Paper-based analytical device |
| PADs | Paper-based analytical devices |
| POC | Point-of-care |
| QD | Quantum dot |
| RSD | Relative standard deviation |
| SEM | Scanning electron microscopy |
| TC | Tetracycline |
| TEM | Transmission electron microscopy |
| TPCA | 5-oxo-3,5-dihydro-2 H-thiazolo[3,2-a]pyridine-7-carboxylic acid |
| TMB | 3,3′,5,5′-tetramethylbenzidine |
References
- Wang, S.; Chen, W.J.; Du, A.; Kou, Y.; Xu, X.; Hu, D.; Lu, Z. Advances in Paper-Based Analytical Devices Relying on Optical Detection. Adv. Compos. Hybrid Mater. 2025, 8, 260. [Google Scholar] [CrossRef]
- Behera, D.J.; Pattanaik, K.P.; Kulabhusan, P.; Naik, S.; Mahanty, A.; Das Mohapatra, S.; Adak, T. Microfluidic Paper-Based Devices for Efficient and Sensitive Pesticide Detection: A Review. J. Food Compos. Anal. 2025, 142, 107498. [Google Scholar] [CrossRef]
- Fatemi, K.; Lau, S.Y.; Fatemi, R.; Coorey, R.; Heshmatipour, Z.; Chung, L.Y.; Kiew, S.F. Paper-Based Biosensing Using Single-Stranded Oligonucleotide Aptamers for Enhanced Food Safety. J. Food Compos. Anal. 2025, 141, 107331. [Google Scholar] [CrossRef]
- Yang, Z.; Lou, Y.; Sun, L.; Chen, S.; Li, M.; Lu, Z.; Zhang, L.; Cao, R.; Tian, J. Recent Advancements in Paper Microfluidics for Blood Analysis and Diagnostics. TrAC Trends Anal. Chem. 2025, 190, 118289. [Google Scholar] [CrossRef]
- Shirkhodaie, M.; Seidi, S.; Khazaei, K.; Kohan, R.; Bakhshmaleki, S. Paper-Based Sorptive Extraction in Bioanalysis: Emerging Developments, Applications, and Future Perspective. Microchem. J. 2025, 214, 114127. [Google Scholar] [CrossRef]
- El-Raheem, H.A.; Saidu, A.K.; Zazoua, A.; Raoov, M.; Ozkan, S.A.; Alahmad, W. Microfluidic Paper-Based Analytical Devices and Miniaturized Systems to Detect Sugar Adulteration in Honey: A Mini-Review. Microchem. J. 2025, 208, 112469. [Google Scholar] [CrossRef]
- Nghia, N.N. Microfluidic Paper-Based Analytical Devices for Food Spoilage Detection: Emerging Trends and Future Directions. Talanta 2026, 297, 128816. [Google Scholar] [CrossRef]
- Berasarte, I.; Albizu, G.; Santos, W.F.; de Lima, L.F.; Ostra, M.; Vidal, M.; de Araujo, W.R. Chemometrics and Digital Image Colorimetry Approaches Applied to Paper-Based Analytical Devices: A Review. Anal. Chim. Acta 2025, 1339, 343577. [Google Scholar] [CrossRef]
- Pal, D.B.; Rathoure, A.K.; Awasthi, A.; Gautam, S.; Kumar, S.; Kapoor, A. Microfluidic Paper-Based Lab-on-a-Chip Chemiluminescence Sensing for Healthcare and Environmental Applications: A Review. Luminescence 2025, 40, e70324. [Google Scholar] [CrossRef]
- Thang, T.Q.; Kim, J. Applications of 3D Printing in Paper-Based Devices for Biochemical and Environmental Analyses. Chemosensors 2025, 13, 89. [Google Scholar] [CrossRef]
- Parolo, C.; Merkoçi, A. Paper-Based Nanobiosensors for Diagnostics. Chem. Soc. Rev. 2012, 42, 450–457. [Google Scholar] [CrossRef]
- Patel, S.; Jamunkar, R.; Sinha, D.; Monisha; Patle, T.K.; Kant, T.; Dewangan, K.C.; Shrivas, K.K. Recent Development in Nanomaterials Fabricated Paper-Based Colorimetric and Fluorescent Sensors: A Review. Trends Environ. Anal. Chem. 2021, 31, e00136. [Google Scholar] [CrossRef]
- Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent Developments in Paper-Based Microfluidic Devices. Anal. Chem. 2014, 87, 19–41. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, Y.; Han, L.; Yan, Y.; Jiang, H. Three-Dimensional Paper Based Platform for Automatically Running Multiple Assays in a Single Step. Talanta 2019, 200, 177–185. [Google Scholar] [CrossRef]
- Lim, H.; Jafry, A.T.; Lee, J. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices. Molecules 2019, 24, 2869. [Google Scholar] [CrossRef]
- Rivas, L.; Medina-Sánchez, M.; De La Escosura-Muñiz, A.; Merkoçi, A. Improving Sensitivity of Gold Nanoparticle-Based Lateral Flow Assays by Using Wax-Printed Pillars as Delay Barriers of Microfluidics. Lab Chip 2014, 14, 4406–4414. [Google Scholar] [CrossRef]
- Carrilho, E.; Martinez, A.W.; Whitesides, G.M. Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Anal. Chem. 2009, 81, 7091–7095. [Google Scholar] [CrossRef]
- Henares, T.G.; Yamada, K.; Takaki, S.; Suzuki, K.; Citterio, D. “Drop-Slip” Bulk Sample Flow on Fully Inkjet-Printed Microfluidic Paper-Based Analytical Device. Sens. Actuators B Chem. 2017, 244, 1129–1137. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, W.; Zheng, W.; Cao, F.; Jiang, X. Inkjet-Printed Barcodes for a Rapid and Multiplexed Paper-Based Assay Compatible with Mobile Devices. Lab Chip 2017, 17, 3874–3882. [Google Scholar] [CrossRef]
- Xia, Y.; Si, J.; Li, Z. Fabrication Techniques for Microfluidic Paper-Based Analytical Devices and Their Applications for Biological Testing: A Review. Biosens. Bioelectron. 2016, 77, 774–789. [Google Scholar] [CrossRef]
- Bezinge, L.; Shih, C.J.; Richards, D.A.; deMello, A.J. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. Small 2024, 20, 2401148. [Google Scholar] [CrossRef]
- Olkkonen, J.; Lehtinen, K.; Erho, T. Flexographically Printed Fluidic Structures in Paper. Anal. Chem. 2010, 82, 10246–10250. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.F.; Wang, J. Wearable Biosensors for Healthcare Monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Anushka; Bandopadhyay, A.; Das, P.K. Paper Based Microfluidic Devices: A Review of Fabrication Techniques and Applications. Eur. Phys. J. Spec. Top. 2023, 232, 781–815. [Google Scholar] [CrossRef]
- Karim, K.; Lamaoui, A.; Amine, A. Paper-Based Optical Sensors Paired with Smartphones for Biomedical Analysis. J. Pharm. Biomed. Anal. 2023, 225, 115207. [Google Scholar] [CrossRef]
- Wei, Q.; Qi, H.; Luo, W.; Tseng, D.; Ki, S.J.; Wan, Z.; Göröcs, Z.; Bentolila, L.A.; Wu, T.-T.; Sun, R.; et al. Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone. ACS Nano 2013, 7, 9147–9155. [Google Scholar] [CrossRef]
- Shen, L.; Hagen, J.A.; Papautsky, I. Point-of-Care Colorimetric Detection with a Smartphone. Lab Chip 2012, 12, 4240–4243. [Google Scholar] [CrossRef]
- Lee, S.; Bi, L.; Chen, H.; Lin, D.; Mei, R.; Wu, Y.; Chen, L.; Joo, S.-W.; Choo, J. Recent Advances in Point-of-Care Testing of COVID-19. Chem. Soc. Rev. 2023, 52, 8500–8530. [Google Scholar] [CrossRef]
- Ortiz-Gómez, I.; Toral-López, V.; Romero, F.J.; de Orbe-Payá, I.; García, A.; Rodríguez, N.; Capitán-Vallvey, L.F.; Morales, D.P.; Salinas-Castillo, A. In Situ Synthesis of Fluorescent Silicon Nanodots for Determination of Total Carbohydrates in a Paper Microfluidic Device Combined with Laser Prepared Graphene Heater. Sens. Actuators B Chem. 2021, 332, 129506. [Google Scholar] [CrossRef]
- Ngo, Y.-L.T.; Nguyen, P.L.; Jana, J.; Choi, W.M.; Chung, J.S.; Hur, S.H. Simple Paper-Based Colorimetric and Fluorescent Glucose Sensor Using N-Doped Carbon Dots and Metal Oxide Hybrid Structures. Anal. Chim. Acta 2021, 1147, 187–198. [Google Scholar] [CrossRef]
- Chen, S.; Yu, Y.L.; Wang, J.H. Inner Filter Effect-Based Fluorescent Sensing Systems: A Review. Anal. Chim. Acta 2018, 999, 13–26. [Google Scholar] [CrossRef]
- Kumar Panigrahi, S.; Kumar Mishra, A. Inner Filter Effect in Fluorescence Spectroscopy: As a Problem and as a Solution. J. Photochem. Photobiol. C Photochem. Rev. 2019, 41, 100318. [Google Scholar] [CrossRef]
- Wu, Z.; Fu, N.; Han, X.; Yan, T.; Zheng, J.; Yi, J. The Visual Detection of Amoxicillin Using a Dual-Mode Probe Based on CQD-Doped MnO2 Nanospheres. Anal. Methods 2025, 17, 8171–8179. [Google Scholar] [CrossRef]
- Norouzi, S.; Dashtian, K.; Amourizi, F.; Zare-Dorabei, R. Red-Emissive Carbon Nanostructure-Anchored Molecularly Imprinted Er-BTC MOF: A Biosensor for Visual Anthrax Monitoring. Analyst 2023, 148, 3379–3391. [Google Scholar] [CrossRef]
- Chen, H.; Xie, Y.; Kirillov, A.M.; Liu, L.; Yu, M.; Liu, W.; Tang, Y. A Ratiometric Fluorescent Nanoprobe Based on Terbium Functionalized Carbon Dots for Highly Sensitive Detection of an Anthrax Biomarker. Chem. Commun. 2015, 51, 5036–5039. [Google Scholar] [CrossRef]
- Chen, L.; Luo, X.; Wang, X.; Wang, Y.; Yang, H.; Zhao, S.; Zhang, Q.; Liu, X.; Jiang, H. Nanoengineered Nonenzymatic Paper-Based Fluorescent Platform for Pre-Dilution-Free and Visual Real-Time Home Monitoring of Urea for Early Warning of Abnormal Nitrogen-Based Unhealthy Issues. Adv. Healthc. Mater. 2024, 13, 2402009. [Google Scholar] [CrossRef]
- Al-Jaf, S.H.; Omer, K.M. Portable Smartphone-Based Detection Integrated with Paper Based Device Functionalised with Green Emissive Carbon Dots for Selective Determination of Fe3+ Ions. Int. J. Environ. Anal. Chem. 2024, 104, 5773–5786. [Google Scholar] [CrossRef]
- Qi, J.; Li, B.; Lin, D.; Du, Z.; Fu, L.; Wang, X.; Zhang, Z.; Luo, L.; Chen, L. Dual-Mode Undistorted Visual Fluorescent Sensing Strategy through Manipulating the Coffee-Ring Effect on Microfluidic Paper-Based Chip. Anal. Chem. 2023, 95, 10486–10491. [Google Scholar] [CrossRef]
- Jia, L.; Guo, S.; Xu, J.; Chen, X.; Zhu, T.; Zhao, T. A Ratiometric Fluorescent Nano-Probe for Rapid and Specific Detection of Tetracycline Residues Based on a Dye-Doped Functionalized Nanoscaled Metal–Organic Framework. Nanomaterials 2019, 9, 976. [Google Scholar] [CrossRef]
- Shahvar, A.; Saraji, M.; Gordan, H.; Shamsaei, D. Combination of Paper-Based Thin Film Microextraction with Smartphone-Based Sensing for Sulfite Assay in Food Samples. Talanta 2019, 197, 578–583. [Google Scholar] [CrossRef]
- Wang, C.; Gao, X.; Wang, S.; Liu, Y. A Smartphone-Integrated Paper Sensing System for Fluorescent and Colorimetric Dual-Channel Detection of Foodborne Pathogenic Bacteria. Anal. Bioanal. Chem. 2020, 412, 611–620. [Google Scholar] [CrossRef]
- Xu, Z.; Song, C.; Chen, Z.; Zeng, C.; Lv, T.; Wang, L.; Liu, B. A Portable Paper-Based Testing Device for Fast and on-Site Determination of Nitroxynil in Food. Anal. Chim. Acta 2023, 1260, 341201. [Google Scholar] [CrossRef]
- Baiak, B.H.B.; Lehnen, C.R.; da Rocha, R.A. Anthelmintic Resistance in Cattle: A Systematic Review and Meta-Analysis. Livest. Sci. 2018, 217, 127–135. [Google Scholar] [CrossRef]
- Guo, S.; Lan, J.; Liu, B.; Zheng, B.; Gong, X.; Fan, X. Continuous Flow Synthesis of N-Doped Carbon Quantum Dots for Total Phenol Content Detection. Chemosensors 2022, 10, 334. [Google Scholar] [CrossRef]
- Xia, J.; Huang, J.; Zhang, H.; Zhang, N.; Li, F.; Zhou, P.; Zhou, L.; Pu, Q. Natural Flavonols as Probes for Direct Determination of Borax: From Conventional Fluorescence Analysis to Paper-Based Smartphone Sensing. Talanta 2024, 274, 126053. [Google Scholar] [CrossRef]
- Bu, Y.; Yin, R.; Yu, L.; Su, P.; Li, Z.; Ye, E.; Loh, X.J.; Zhu, H.; Wang, S. Paper-Based Device for the Selective Determination of Doxycycline Antibiotic Based on the Turn-on Fluorescence of Bovine Serum Albumin–Coated Copper Nanoclusters. Microchim. Acta 2022, 189, 415. [Google Scholar] [CrossRef]
- Ortiz-Gómez, I.; Ipatov, A.; Barreiro-Docío, E.; Salinas-Castillo, A.; de Orbe-Payá, I.; Fermín Capitán-Vallvey, L.; Prado, M. Microfluidic Paper-Based Analytical Aptasensor for Fluorometric β-Lactoglobulin Determination. Microchem. J. 2024, 198, 110121. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, X.; Ji, X.; Hao, Z.; Tao, Z. Smartphone-Based Enzyme-Free Fluorescence Sensing of Organophosphate DDVP. Microchim. Acta 2020, 187, 419. [Google Scholar] [CrossRef]
- Tong, X.; Wang, T.; Cao, Y.; Cai, G.; Shi, S.; Jiang, Q.; Guo, Y. Multi-emitting Fluorescent System–Assisted Lab-in-a-syringe Device for On-site and Background-free Detection of 2,4-dichlorophenoxyacetic Acid. Food Front. 2023, 4, 1453–1461. [Google Scholar] [CrossRef]
- Tsaftari, V.C.; Tarara, M.; Tzanavaras, P.D.; Tsogas, G.Z. A Novel Equipment-Free Paper-Based Fluorometric Method for the Analytical Determination of Quinine in Soft Drink Samples. Sensors 2023, 23, 5153. [Google Scholar] [CrossRef]
- He, Y.; Hua, M.Z.; Feng, S.; Lu, X. Development of a Smartphone-Integrated Microfluidic Paper-Based Optosensing Platform Coupled with Molecular Imprinting Technique for in-Situ Determination of Histamine in Canned Tuna. Food Chem. 2024, 451, 139446. [Google Scholar] [CrossRef]
- Thangam, E.B.; Jemima, E.A.; Singh, H.; Baig, M.S.; Khan, M.; Mathias, C.B.; Church, M.K.; Saluja, R. The Role of Histamine and Histamine Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets. Front. Immunol. 2018, 9, 374301. [Google Scholar] [CrossRef]
- Tong, X.; Lin, X.; Duan, N.; Wang, Z.; Wu, S. Laser-Printed Paper-Based Microfluidic Chip Based on a Multicolor Fluorescence Carbon Dot Biosensor for Visual Determination of Multiantibiotics in Aquatic Products. ACS Sens. 2022, 7, 3947–3955. [Google Scholar] [CrossRef]
- Patel, S.; Shrivas, K.; Sinha, D.; Karbhal, I.; Patle, T.K.; Monisha; Tikeshwari. A Portable Smartphone-Assisted Digital Image Fluorimetry for Analysis of Methiocarb Pesticide in Vegetables: Nitrogen-Doped Carbon Quantum Dots as a Sensing Probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 299, 122824. [Google Scholar] [CrossRef]
- Lert-itthiporn, A.; Srikritsadawong, P.; Choengchan, N. Foldable Paper-Based Analytical Device for Membraneless Gas-Separation and Determination of Iodate Based on Fluorescence Quenching of Gold Nanoclusters. Talanta 2021, 221, 121574. [Google Scholar] [CrossRef]
- Chen, L.; Xu, H.; Wang, L.; Li, Y.; Tian, X. Portable Ratiometric Probe Based on the Use of Europium(III) Coordination Polymers Doped with Carbon Dots for Visual Fluorometric Determination of Oxytetracycline. Microchim. Acta 2020, 187, 125. [Google Scholar] [CrossRef]
- Maia, M.V.; Suarez, W.T.; dos Santos, V.B.; de Almeida, J.P.B. Carbon Dots on Paper for Determination of Cu2+ in Sugar Cane Spirits Samples for Fluorescence Digital Image-Based Method. Microchem. J. 2022, 179, 107500. [Google Scholar] [CrossRef]
- Liu, L.; Qian, M.; Yang, Z.; Xiao, L.; Gong, X.; Hu, Q. Ratiometric Visualization of Folic Acid with a Smartphone-Assisted Fluorescence Paper Device Based on Gadolinium and Nitrogen Co-Doped CDs. Dye. Pigment. 2023, 209, 110877. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Wu, Y.L.; Lu, Y. A Coffee-Ring Effect-Based Paper Sensor Chip for the Determination of Beta-Lactoglobulin in Foods via a Smartphone. Sens. Actuators B Chem. 2023, 374, 132807. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, H.; Yang, Y.; Jiang, L.; Du, F.; Zeng, L. A Colorimetric and NIR Fluorescence Turn-on Sensing Platform for Rapid and Visual Determination of BPO in Wheat Flour. Food Control 2025, 178, 111524. [Google Scholar] [CrossRef]
- Jia, R.; Jia, L.; Zhao, X.; Huang, Y.; Zhang, L.; Zhao, D.X.; Xu, J.; Zhao, T. High Sensitivity Distinguishing Detection of Fluoroquinolones with a Cage-Based Lanthanide Metal-Organic Framework in Food. Food Chem. 2025, 464, 141652. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, M.; Li, M.; Li, J.; Zhang, S.; Xu, F. Smartphone-Aided Paper Imprinted Aptasensor for the Ultrasensitive Detection of Lead in Aquatic Products. Talanta 2026, 298, 128802. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Li, Q.; Wang, M.; Miao, C.; Liu, Y.; Zhang, S. A Turn-On Ratiometric Fluorescence Probe Based on Dye@MOFs for Visual Detection of AFB1 with Paper Sensor Assisted by Smartphone. J. Fluoresc. 2025, 35, 8315–8326. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, R.; Gao, F.; Chen, G.; Liu, S.; Ouyang, Q. Cloud-Integrated Microfluidic Fluorescence Sensing Platform Using UCNP/Fe3O4@Cu Nanoprobes for Simultaneous and on-Site Multi-Pesticide Residue Detection with Smartphone Assistance. Food Chem. 2025, 492, 145636. [Google Scholar] [CrossRef]
- Tarara, M.; Tzanavaras, P.D.; Tsogas, G.Z. O-Phthalaldehyde Derivatization for the Paper-Based Fluorometric Determination of Glutathione in Nutritional Supplements. Molecules 2024, 29, 2550. [Google Scholar] [CrossRef]
- Nedeljko, P.; Turel, M.; Lobnik, A. Turn-On Fluorescence Detection of Glutathione Based on o-Phthaldialdehyde-Assisted SiO2 Particles. J. Sens. 2018, 2018, 1692702. [Google Scholar] [CrossRef]
- Ghohestani, E.; Tashkhourian, J.; Hemmateenejad, B. Rapid Detection and Quantification of Milk Adulterants Using a Nanoclusters-Based Fluorescent Optical Tongue. Food Chem. 2024, 456, 139973. [Google Scholar] [CrossRef]
- Karrat, A.; Palacios-Santander, J.M.; Amine, A.; Cubillana-Aguilera, L. A Novel Magnetic Molecularly Imprinted Polymer for Selective Extraction and Determination of Quercetin in Plant Samples. Anal. Chim. Acta 2022, 1203, 339709. [Google Scholar] [CrossRef]
- Lim, D.S.; Lee, Y.J.; Yoo, J.H.; Choi, M.G.; Paek, K.; Koh, H.R.; Chang, S.-K. Fluorometric Analysis of Peracetic Acid by the Oxidative Hydroxylation of a Phenylboronic Acid Containing Dye. Sens. Actuators B Chem. 2019, 298, 126824. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, C.; Duan, X.; Bao, L.; Wang, G.; Fu, W. A Portable Smartphone Platform Based on Fluorescent Carbon Quantum Dots Derived from Biowaste for On-Site Detection of Permanganate. New J. Chem. 2024, 48, 12626–12632. [Google Scholar] [CrossRef]
- Shen, Y.-J.; Zhang, K. A Bifunctional Optical Probe Based on ESIPT-Triggered Disalicylaldehyde with Ratiometric Detection of Iron and Copper Ions. Polyhedron 2021, 193, 114883. [Google Scholar] [CrossRef]
- Tawfik, S.M.; Sharipov, M.; Kakhkhorov, S.; Elmasry, M.R.; Lee, Y. Multiple Emitting Amphiphilic Conjugated Polythiophenes-Coated CdTe QDs for Picogram Detection of Trinitrophenol Explosive and Application Using Chitosan Film and Paper-Based Sensor Coupled with Smartphone. Adv. Sci. 2019, 6, 1801467. [Google Scholar] [CrossRef]
- Placer, L.; Lavilla, I.; Pena-Pereira, F.; Bendicho, C. Bromine Speciation by a Paper-Based Sensor Integrated with a Citric Acid/Cysteamine Fluorescent Probe and Smartphone Detection. Sens. Actuators B Chem. 2022, 358, 131499. [Google Scholar] [CrossRef]
- Wu, J.; Wang, M.; Hong, H.; Lin, J.; Gan, N.; Bi, W. A Novel Truncated DNAzyme Modified Paper Analytical Device for Point-of-Care Test of Copper Ions in Natural Waters. Chemosensors 2022, 10, 72. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, X.; Zhou, W.; Yao, R.; Zhang, X.; Jing, S. Carbon Dots/Ruthenium(III) Nanocomposites for FRET Fluorescence Detection and Removal of Mercury (II) via Assembling into Nanofibers. Talanta 2024, 268, 125322. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, J.; Li, Y.; Zhao, T.; Zhang, L.; Bi, N.; Gou, J.; Jia, L. Two Birds with One Stone: Visual Colorful Assessment of Dipicolinic Acid and Cu2+ by Ln-MOF Hybrid Attapulgite Nano-Probe. Appl. Surf. Sci. 2022, 605, 154665. [Google Scholar] [CrossRef]
- Maia, M.V.; Suarez, W.T.; dos Santos, V.B.; de Oliveira, S.C.B.; de Almeida, J.P.B. A Novel Approach to Hg2+ Determination in Water Samples Using Carbon Dots Based on Paper and Fluorescence Digital Image Analysis. J. Chem. Technol. Biotechnol. 2024, 99, 1157–1164. [Google Scholar] [CrossRef]
- Xia, Y.-F.; Yuan, H.-Q.; Qiao, C.; Li, W.; Wang, R.; Chen, P.; Li, Y.-X.; Bao, G.-M. Multifunctional Eu3+-MOF for Simultaneous Quantification of Malachite Green and Leuco-Malachite Green and Efficient Adsorption of Malachite Green. J. Hazard. Mater. 2024, 465, 133386. [Google Scholar] [CrossRef]
- Placer, L.; Estévez, L.; Lavilla, I.; Pena-Pereira, F.; Bendicho, C. Assessing Citric Acid-Derived Luminescent Probes for PH and Ammonia Sensing: A Comprehensive Experimental and Theoretical Study. Anal. Chim. Acta 2021, 1186, 339125. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Q.; Gao, A.; Zhang, J.; Wan, H.; Liu, Q.; Song, J. A Smartphone-Assisted Ratiometric Fluorescence and Colorimetric Detection of Nitrite Based on 2, 3-Diaminonaphthalene and Gold Nanoclusters Paper Strip. Food Chem. 2025, 492, 145459. [Google Scholar] [CrossRef]
- Fu, W.; Ling, M.; Fu, X.; Wang, L.; Xu, S.; Wang, G.; Liu, R.; Han, C.; Li, G.; Zhang, J.; et al. Green Synthesized Nitrogen-Doped Carbon Quantum Dots for Fluorescence Sensing, Information Encryption and Smartphone-Assisted Visual Detection. Dye. Pigment. 2024, 231, 112394. [Google Scholar] [CrossRef]
- Sasikumar, T.; Ilanchelian, M. Facile Preparation of Dihydrolipoic Acid-Stabilized Red-Emitting Silver Nanoclusters as a Sensitive Fluorometric Probe for Sulfide Ions Detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 302, 123034. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yin, Y.; Zhao, Y.; Xing, X.; Zhang, Y.; Sun, C. A Ratiometric and Colorimetric Dual-Mode Fluorescence Method for the Sensitive Determination of Copper Ion. Fuller. Nanotub. Carbon Nanostruct. 2025, 33, 526–537. [Google Scholar] [CrossRef]
- Liu, G.; Yu, Z.; Zhang, W.; Li, X.; Feng, J.; Feng, D.-Q. Smartphone-Assisted Blue-Green-Emitting Biomass-carbon Dots-Based Ratiometric Sensing Platform for Intelligent Visual Determination of Malachite Green. Microchem. J. 2025, 219, 116006. [Google Scholar] [CrossRef]
- Barzallo, D.; Palacio, E.; Ferrer, L.; Taboada Sotomayor, M.d.P. All-in-One Spot Test Method for Tetracycline Using Molecularly Imprinted Polymer-Coated Paper Integrated into a Portable 3D Printed Platform with Smartphone-Based Fluorescent Detection. Talanta 2025, 281, 126856. [Google Scholar] [CrossRef]
- Guan, X.; Xu, X.; Zhang, Q.; Wu, Y.; Wang, X.; Chen, X.; Xiao, Q. Dual-Emissive NaGdF4:Eu/CDs Nanocomposites for Visual and Quantitative Detection of Hg2+ and Anti-Counterfeiting Application. Microchem. J. 2025, 211, 112978. [Google Scholar] [CrossRef]
- Han, J.; Liu, H.; Qi, J.; Xiang, J.; Fu, L.; Sun, X.; Wang, L.; Wang, X.; Li, B.; Chen, L. A Simple and Effective Visual Fluorescent Sensing Paper-Based Chip for the Ultrasensitive Detection of Mercury Ions in Environmental Water. Sensors 2023, 23, 3094. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Guo, G.; Zhang, T.; Wang, L.; Hu, H.; Luo, X.; Wang, X.; Chen, D. Sustainable Red Beetroot-Derived Synthesis of n-Doped Carbon Dots for Ratiometric Detection of Doxorubicin and Portable Visual Sensing Platform Based on 3D Microfluidics Paper-Based Analytical Device. Microchem. J. 2024, 202, 110764. [Google Scholar] [CrossRef]
- Pei, T.; He, Y.; Wang, Y.; Song, G. Fluorine-Free Synthesis of Ti3C2 MQDs for Smartphone-Based Fluorescent and Colorimetric Determination of Acetylcholinesterase and Organophosphorus Pesticides. Microchim. Acta 2022, 189, 7. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2009, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Lu, W.; Chai, X.; Dong, C.; Shuang, S.; Guo, Y. Design of a Dual-Mode Ratiometric Fluorescent Probe via MOF-on-MOF Strategy for Al (III) and PH Detection. Anal. Chim. Acta 2024, 1298, 342403. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Ouyang, F.; Zheng, Z.; Huang, X.; Zhang, H.; He, D.; He, S.; Wei, H.; Yu, C.-Y. A Smartphone-Integrated Portable Platform Based on Polychromatic Ratiometric Fluorescent Paper Sensors for Visual Quantitative Determination of Norfloxacin. Anal. Chim. Acta 2023, 1279, 341837. [Google Scholar] [CrossRef]
- Sarvestani, P.S.; Majdinasab, M.; Golmakani, M.T.; Shaghaghian, S.; Eskandari, M.H. Development of a Simple and Rapid Dipstick Paper-Based Test Strip for Colorimetric Determination of Nitrate and Nitrite in Water and Foodstuffs. Food Chem. 2024, 461, 140856. [Google Scholar] [CrossRef]
- Sun, Z.; Gao, Y.; Niu, Z.; Pan, H.; Xu, X.; Zhang, W.; Zou, X. Programmable-Printing Paper-Based Device with a MoS2 NP and Gmp/Eu-Cit Fluorescence Couple for Ratiometric Tetracycline Analysis in Various Natural Samples. ACS Sens. 2021, 6, 4038–4047. [Google Scholar] [CrossRef]
- Lin, Y.; Ye, S.; Tian, J.; Leng, A.; Deng, Y.; Zhang, J.; Zheng, C. Paper-Assisted Ratiometric Fluorescent Sensors for on-Site Sensing of Sulfide Based on the Target-Induced Inner Filter Effect. J. Hazard. Mater. 2023, 459, 132201. [Google Scholar] [CrossRef]
- El-Shaheny, R.; Al-Khateeb, L.A.; El Hamd, M.A.; El-Maghrabey, M. Correction Pen as a Hydrophobic/Lipophobic Barrier Plotter Integrated with Paper-Based Chips and a Mini UV-Torch to Implement All-in-One Device for Determination of Carbazochrome. Anal. Chim. Acta 2021, 1172, 338684. [Google Scholar] [CrossRef]
- El-Shaheny, R.; Al-Khateeb, L.A.; El-Maghrabey, M. Dual-Excitation in-Lab-Made Device Based on a Handy UV Lamp and GQDs-Modified PADs for Simultaneous Determination of Acetaminophen and Its Endocrine Disrupting Impurity 4-Nitrophenol. Sens. Actuators B Chem. 2021, 348, 130657. [Google Scholar] [CrossRef]
- Gao, J.; Wang, D.; Chen, Y.; Urujeni, G.I.; Tang, X.; Lu, Z.; Wang, Y.; He, H.; Xiao, D.; Dramou, P. Portable Paper-Based Probe for on-Site Ratiometric Fluorescence Determination of Total Flavonol Glycosides in Plant Extract Using Smartphone Imaging. Microchim. Acta 2024, 191, 70. [Google Scholar] [CrossRef] [PubMed]
- Al-Khateeb, L.A.; El-Maghrabey, M.; El-Shaheny, R. Sensitive Determination of Naftazone Using Carbon Quantum Dots Nanoprobe by Fluorimetry and Smartphone-Based Techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 302, 123109. [Google Scholar] [CrossRef]
- Malhotra, K.; Noor, M.O.; Krull, U.J. Detection of Cystic Fibrosis Transmembrane Conductance Regulator ΔF508 Gene Mutation Using a Paper-Based Nucleic Acid Hybridization Assay and a Smartphone Camera. Analyst 2018, 143, 3049–3058. [Google Scholar] [CrossRef] [PubMed]






| Analyte | Sample | Method Principle | λex (nm) | LOD | Color Processing Application | Ref. |
|---|---|---|---|---|---|---|
| Peracetic acid | Airborne | Oxidative hydroxylation of a phenylboronic acid containing dye. | 365 | 3.5 ppb | ColorMeter RGB Hex | [69] |
| MnO4− | Water | Reaction of permanganate with synthesized fluorescent CQDs | 400 | 3.31 μM | – | [70] |
| Fe(III), Cu(II) | Water | Complexation of Fe(III) and Cu(II) with disalicylaldehyde-based probe | 365 | 0.21, 0.40 μM | – | [71] |
| 2,4,6-trinitrophenol | Tap and river water | Fluorescent quenching of polythiophene-coated CdTe quantum dots | 365 | 0.56 nM | PAD analysis | [72] |
| Bromine | Water | Luminescence quenching of the probe (5-oxo-3,5-dihydro-2 H-thiazolo[3,2-a]pyridine-7-carboxylic acid) | 254/365 | 5.4 μg/L | App RGB Color Detector | [73] |
| Copper | Water | The detection mechanism was based on Cu(II)-catalyzed azide-alkyne cycloaddition (Cu(II)AAC) reaction | 365 | 0.1 μM | Pixolor App | [74] |
| Hg(II) | Water | Reaction of Hg(II) with CQ/Ru(III) nanocomposites | 400 | 95 nM | F Color Picker | [75] |
| Dipicolinic acid, Cu2+ | Drinking water | Reaction with bifunctional fluorescent nanoprobe (ATP@Eu:Tb-MOF) | 254 | 6.94 nM | – | [76] |
| Hg(II) | Water | Reaction of Hg(II) with carbon dots | 370 | 0.23 μM | Color Name | [77] |
| Malachite green, leuco-malachite green | Fish pond water | Reaction with dual-emissive Eu3+-metal–organic framework | 302 | 1.98 nM, 34.2 nM | – | [78] |
| Ammonia, pH | Water, sendiment | Reaction with citric acid-based cysteine and cysteamine luminescent probes | 364 | 37 μM | – | [79] |
| Nitrite | Water | Reaction with 2,3-diaminonaphthalene and gold nanoclusters | 370 | 2.3 ppb | Color Grab | [80] |
| Fe3+, ascorbic acid | Water | Reaction with nitrogen-doped CQDs | 532 | 253 nM, 1570 nM | – | [81] |
| Sulfide | Tap water, drinking water | Reaction of sulfide with dihydrolipoic acid stabilized silver nanoclusters | 420 | 32.71 nM | Color Recognizer | [82] |
| Cu2+ | Tap water | Reaction with blue fluorescence CQDs and yellow fluorescence CQDs | 450 | 730 nM | – | [83] |
| Malachite green | Tap and river water | Reaction with bovine serum albumin-Au dots | 350 | 25 nM | – | [84] |
| TC | MIP-coated paper | 400 | 40 ppb | ImageJ | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zacharis, C.K. Paper-Based Analytical Devices Coupled with Fluorescence Detection and Smartphone Imaging: Advances and Applications. Sensors 2026, 26, 1012. https://doi.org/10.3390/s26031012
Zacharis CK. Paper-Based Analytical Devices Coupled with Fluorescence Detection and Smartphone Imaging: Advances and Applications. Sensors. 2026; 26(3):1012. https://doi.org/10.3390/s26031012
Chicago/Turabian StyleZacharis, Constantinos K. 2026. "Paper-Based Analytical Devices Coupled with Fluorescence Detection and Smartphone Imaging: Advances and Applications" Sensors 26, no. 3: 1012. https://doi.org/10.3390/s26031012
APA StyleZacharis, C. K. (2026). Paper-Based Analytical Devices Coupled with Fluorescence Detection and Smartphone Imaging: Advances and Applications. Sensors, 26(3), 1012. https://doi.org/10.3390/s26031012
