Improved Pressure Sensing Performance of Self-Powered Electrochemical Pressure Sensor Using a Simple Electrode Coplanar Structure
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of the LP Pressure Sensing Layers
2.3. Fabrication of the LP-ECP Sensors
2.4. Characterization and Measurement of the LP-ECP Sensors
3. Results and Discussion
3.1. Characterization of Morphology and Element Distribution
3.2. Performances of the LP-ECP Sensors
3.3. Pressure Sensing and Power Generation Mechanisms
3.4. Application Demonstration of the LP-ECP Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, Z.; Gai, Y.; Wu, Y.; Liu, Z.; Li, Z. Wearable mechanical and electrochemical sensors for real-time health monitoring. Commun. Mater. 2024, 5, 211. [Google Scholar] [CrossRef]
- Deng, M.; Ren, Z.; Yin, J.; Zhou, X.; Wang, L.; Liu, N. A constructive perspective on ionic self-powered pressure sensing. Prog. Mater. Sci. 2025, 157, 101595. [Google Scholar] [CrossRef]
- Saha, K.; Chatterjee, A.; Das, A.; Ghorai, A.; Jeong, U. Self-powered ionic tactile sensors. J. Mater. Chem. C 2023, 11, 7920–7936. [Google Scholar] [CrossRef]
- Qin, R.; Nong, J.; Wang, K.; Liu, Y.; Zhou, S.; Hu, M.; Zhao, H.; Shan, G. Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 2024, 36, 2312761. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; He, H.; Dong, W.; Duan, Z.; Yuan, Z.; Li, W.; Jiang, Y.; Tai, H. Strategies for improving the performances of flexible capacitive pressure sensors: A review. Chem. Eng. J. 2026, 529, 172646. [Google Scholar] [CrossRef]
- Shang, J.C.; Yang, H.; Hong, G.Q.; Zhao, W.H.; Yang, Y.F. Flexible pressure sensor enhanced by polydimethylsiloxane and microstructured conductive networks with positive resistance-pressure response and wide working range. Compos. Part B Eng. 2023, 264, 110931. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Liu, Y.; Yang, C.; Liu, W.; Qi, M.; Zhang, D. PDMS film-based flexible pressure sensor array with surface protruding structure for human motion detection and wrist posture recognition. ACS Appl. Mater. Interfaces 2024, 16, 2554–2563. [Google Scholar] [CrossRef]
- Jia, M.; Yi, C.; Han, Y.; Wang, L.; Li, X.; Xu, G.; He, K.; Li, N.; Hou, Y.; Wang, Z.; et al. Hierarchical network enabled flexible textile pressure sensor with ultrabroad response range and high-temperature resistance. Adv. Sci. 2022, 9, 2105738. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Zhao, C.; Li, W.; Dong, E.; Xu, M.; Huang, H.; Yang, Y.; Li, L.; Zheng, L.; et al. Breaking the saturation of sensitivity for ultrawide range flexible pressure sensors by soft-strain effect. Adv. Mater. 2024, 36, 2405405. [Google Scholar] [CrossRef]
- Guo, D.; Li, Y.; Zhou, Q.; Yu, Z.; Liu, X.; Dong, S.; Zhang, S.; Sung, H.K.; Yao, Z.; Li, Y.; et al. Degradable, biocompatible, and flexible capacitive pressure sensor for intelligent gait recognition and rehabilitation training. Nano Energy 2024, 127, 109750. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Zhang, K.; Wang, S.; Bu, X.; Tan, J.; Song, W.; Mu, Z.; Zhang, P.; Huang, L. A flexible capacitive pressure sensor with adjustable detection range based on the inflatable dielectric layer for human-computer interaction. ACS Appl. Mater. Interfaces 2024, 16, 40250–40262. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Wang, Y.; Huang, W.; Zhao, X.; Chen, K.; Luo, F.; Qin, Y. Fabrication method and various application scenarios of flexible capacitive pressure sensor based on direct formation of conical structure. Chem. Eng. J. 2024, 496, 153957. [Google Scholar] [CrossRef]
- Liu, X.; Tong, J.; Wang, J.; Lu, S.; Yang, D.; Li, H.; Liu, C.; Song, Y. BaTiO3/MXene/PVDF-TrFE composite films via an electrospinning method for flexible piezoelectric pressure sensors. J. Mater. Chem. C 2023, 11, 4614–4622. [Google Scholar] [CrossRef]
- Yu, J.; Xian, S.; Zhang, Z.; Hou, X.; He, J.; Mu, J.; Geng, W.; Qiao, X.; Zhang, L.; Chou, X. Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications. Nano Res. 2023, 16, 5490–5502. [Google Scholar] [CrossRef]
- Cao, C.; Zhou, P.; Wang, J.; Liu, M.; Wang, P.; Qi, Y.; Zhang, T. Ultrahigh sensitive and rapid-response self-powered flexible pressure sensor based on sandwiched piezoelectric composites. J. Colloid Interface Sci. 2024, 664, 902–915. [Google Scholar] [CrossRef]
- Zhou, H.; Gui, Y.; Gu, G.; Ren, H.; Zhang, W.; Du, Z.; Cheng, G. A plantar pressure detection and gait analysis system based on flexible triboelectric pressure sensor array and deep learning. Small 2025, 21, 2405064. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Shi, Y.; Li, S.; Tao, X.; Liu, Z.; Wang, X.; Wang, Z.L.; Chen, X. Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 2022, 16, 4654–4665. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, J.; Wu, L.; Liu, K.; Dai, S.; Hua, J.; Cheng, G.; Ding, J. Dome-conformal electrode strategy for enhancing the sensitivity of BaTiO3-doped flexible self-powered triboelectric pressure sensor. ACS Appl. Mater. Interfaces 2023, 16, 1727–1736. [Google Scholar] [CrossRef]
- Chiu, Y.S.; Rinawati, M.; Chang, Y.H.; Aulia, S.; Chang, C.C.; Chang, L.Y.; Hung, W.S.; Mizuguchi, H.; Haw, S.C.; Yeh, M.H. Enhancing self-induced polarization of PVDF-based triboelectric film by P-doped g-C3N4 for ultrasensitive triboelectric pressure sensors. Nano Energy 2024, 131, 110207. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, Y.; Duan, Z.; Wu, Y.; Yuan, Z.; Zhang, M.; Tai, H. Ion gradient induced self-powered flexible pressure sensor. Chem. Eng. J. 2024, 490, 151660. [Google Scholar] [CrossRef]
- Yin, J.; Jia, P.; Ren, Z.; Zhang, Q.; Lu, W.; Yao, Q.; Deng, M.; Zhou, X.; Gao, Y.; Liu, N. Mechanically enhanced, environmentally stable, and bioinspired charge-gradient hydrogel membranes for efficient ion gradient power generation and linear self-powered sensing. Adv. Mater. 2025, 37, 2417944. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Pan, N.; Zhang, C.; Zhang, C.; Fan, W.; Xia, Y.; Wang, Z.; Sui, K. Self-powered multifunction ionic skins based on gradient polyelectrolyte hydrogels. ACS Nano 2022, 16, 4714–4725. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, Y.; Chen, W.; Zhang, Y. Controlled ion immigration in MXene-PVA composites for self-powered pressure sensor. Chem. Eng. J. 2025, 508, 161039. [Google Scholar] [CrossRef]
- Li, S.; Cheng, Y.; Deng, K.; Sun, H. A self-powered flexible tactile sensor utilizing chemical battery reactions to detect static and dynamic stimuli. Nano Energy 2024, 124, 109461. [Google Scholar] [CrossRef]
- Kim, S.; Cho, W.; Hwang, J.; Kim, J. Self-powered pressure sensor for detecting static and dynamic stimuli through electrochemical reactions. Nano Energy 2023, 107, 108109. [Google Scholar] [CrossRef]
- Liang, C.; Jiao, C.; Gou, H.; Luo, H.; Diao, Y.; Han, Y.; Gan, F.; Zhang, D.; Wu, X. Facile construction of electrochemical and self-powered wearable pressure sensors based on metallic corrosion effects. Nano Energy 2022, 104, 107954. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, Z.; Huang, Z.; Yu, H.; Wang, C.; Zhang, H.; Li, T.; Huang, Q.; Yuan, Z.; Jiang, Y.; et al. Constructing a high-power self-powered electrochemical pressure sensor for multimode pressure detections. Nano Energy 2025, 136, 110747. [Google Scholar] [CrossRef]
- Deka, J.; Saha, K.; Yadav, A.; Raidongia, K. Clay-based nanofluidic membrane derived from vermiculite nanoflakes for pressure-responsive power generation. ACS Appl. Nano Mater. 2021, 4, 4872–4880. [Google Scholar] [CrossRef]
- Hu, Y.P.; Liu, K.Y.; Bai, R.N.; Liu, D.Z.; Yu, W.; Meng, C.Z.; Li, G.X.; Guo, S.J. Rechargeable self-powered pressure sensor based on Zn-ion battery with high sensitivity and broad-range response. Chem. Eng. J. 2024, 497, 154812. [Google Scholar] [CrossRef]
- Lei, D.; Zhang, Q.; Liu, N.; Liu, Z.; Su, T.; Wang, L.; Ren, Z.; Jia, P.; Lu, W.; Gao, Y. Flexible battery-type pressure sensor enhanced with locked water by calcium ion in graphene oxide solid electrolyte. Cell Rep. Phys. Sci. 2022, 3, 101050. [Google Scholar] [CrossRef]
- Sun, Q.J.; Zhao, X.H.; Yeung, C.C.; Tian, Q.; Kong, K.W.; Wu, W.; Venkatesh, S.; Li, W.J.; Roy, V.A.L. Bioinspired, self-powered, and highly sensitive electronic skin for sensing static and dynamic pressures. ACS Appl. Mater. Interfaces 2020, 12, 37239–37247. [Google Scholar] [CrossRef]
- Huang, Z.; Duan, Z.; Huang, Q.; Yuan, Z.; Jiang, Y.; Tai, H. A facilely fabricated electrochemical self-powered pressure sensor for multifunctional applications. J. Mater. Chem. C 2024, 12, 18320–18326. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, X.; Hu, Z.; Sun, Q.; Liu, M.; Gu, P.; Yang, X.; Huang, J.; Zu, G. Broad-range-response battery-type all-in-one self-powered stretchable pressure-sensitive electronic skin. Small 2024, 20, 2305925. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Zhang, Q.; Ren, Z.; Yin, J.; Lei, D.; Lu, W.; Yao, Q.; Deng, M.; Gao, Y.; Liu, N. Self-powered flexible battery pressure sensor based on gelatin. Chem. Eng. J. 2024, 479, 147586. [Google Scholar] [CrossRef]
- Zhang, Q.; Lei, D.; Liu, N.; Liu, Z.; Ren, Z.; Yin, J.; Jia, P.; Lu, W.; Gao, Y. A Zinc-ion battery-type self-powered pressure sensor with long service life. Adv. Mater. 2022, 34, 2205369. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, Y.; Duan, Z.; Wu, Y.; Yuan, Z.; Zhang, M.; Zhao, Q.; Zhang, Y.; Liu, B.; Tai, H. Electrochemical self-powered strain sensor for static and dynamic strain detections. Nano Energy 2023, 118, 108997. [Google Scholar] [CrossRef]
- Zhao, Q.; Duan, Z.; Wu, Y.; Liu, B.; Yuan, Z.; Jiang, Y.; Tai, H. Facile primary battery-based humidity sensor for multifunctional application. Sens. Actuators B Chem. 2022, 370, 132369. [Google Scholar] [CrossRef]
- Tseng, S.F.; Chiu, L.Y.; Hsu, S.H.; Kuo, C.C. High performance flexible and self-powered humidity sensors based on LiCl/LIPG composites. Sens. Actuators B Chem. 2025, 422, 136569. [Google Scholar] [CrossRef]
- Li, T.; Duan, Z.; Huang, Q.; Yang, H.; Yuan, Z.; Jiang, Y.; Tai, H. Integrated surface microstructure and enhanced dielectric constant for constructing simple, low-cost, and high-performance flexible capacitive pressure sensor. Sens. Actuators A Phys. 2024, 376, 115629. [Google Scholar] [CrossRef]
- Lee, T.; Kang, Y.; Kim, K.; Sim, S.; Bae, K.; Kwak, Y.; Park, W.; Kim, M.; Kim, J. All paper-based, multilayered, inkjet-printed tactile sensor in wide pressure detection range with high sensitivity. Adv. Mater. Technol. 2022, 7, 2100428. [Google Scholar] [CrossRef]
- Li, A.; Xu, J.; Zhou, S.; Zhang, Z.; Cao, D.; Wang, B.; Gao, W.; Zhang, W.; Zhang, F. All-paper-based, flexible, and bio-degradable pressure sensor with high moisture tolerance and breathability through conformally surface coating. Adv. Funct. Mater. 2024, 34, 2410762. [Google Scholar] [CrossRef]
- Zeng, M.; Ding, J.; Tian, Y.; Zhang, Y.; Liu, X.; Chen, Z.; Sun, J.; Wu, C.; Yin, H.; Wei, D.; et al. Phase separation manipulated gradient conductivity for a high-precision flexible pressure sensor. Adv. Funct. Mater. 2024, 34, 2411390. [Google Scholar] [CrossRef]
- Ding, X.; Shan, J.; Yang, S.; Liu, J.; Jiang, C.; Yu, S.; Wu, Q. Effect of CNF ratio and pressure on structural and electrochemical performance of hybrid hydrogel for flexible free-standing electrode and sensors. Carbohydr. Polym. 2025, 349, 122955. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Liu, Y.; Deng, H.; Gao, H.; Cao, M.; Zhang, C.; Cheng, X.; Xie, L. Ultra-low cost and high-performance paper-based flexible pressure sensor for artificial intelligent E-skin. Chem. Eng. J. 2024, 499, 156293. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, J.; Guo, R. Printable all-paper pressure sensors with high sensitivity and wide sensing range. ACS Appl. Mater. Interfaces 2023, 15, 4789–4798. [Google Scholar] [CrossRef]
- Wang, C.; Quan, J.; Liu, L.; Cao, P.; Ding, K.; Ding, Y.; Jia, X.; Yan, D.; Lin, N.; Duan, J. A rigid-soft hybrid paper-based flexible pressure sensor with an ultrawide working range and frequency bandwidth. J. Mater. Chem. A 2024, 12, 13994–14004. [Google Scholar] [CrossRef]
- Wei, C.; Xu, Y.; Hu, Y.; Zhang, Q.; Wei, N.; Zeng, W.; Wu, R. Ti3C2Tx MXene paper-based flexible wearable pressure sensor with wide pressure detection range for human motion detection. J. Alloys Compd. 2025, 1017, 179126. [Google Scholar] [CrossRef]
- Liu, X.; Hou, H.; Hu, B.; Wang, Z.; Zhuang, J.; Li, C.; Gao, X.; Liu, C.; Hao, J.; Zhu, X.; et al. Eco-friendly all-paper-based piezoresistive sensor based on BSA/CB/carboxyl-functionalized MWCNT nanocomposites for wearable information interaction. ACS Appl. Nano Mater. 2025, 8, 17247–17258. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, T.; Hebibul, R.; Jiang, Z.; Ding, J.; Peng, N.; Guo, X.; Xu, Y.; Wang, H.; Zhao, Y. A bossed diaphragm piezoresistive pressure sensor with a peninsula-island structure for the ultra-low-pressure range with high sensitivity. Meas. Sci. Technol. 2016, 27, 124012. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, D. High sensitive and linear pressure sensor for ultra-low pressure measurement. Procedia Eng. 2014, 87, 1202–1205. [Google Scholar] [CrossRef]
- Basov, M. Research of MEMS pressure sensor stability with PDA-NFL circuit. IEEE Sens. J. 2024, 24, 34083–34090. [Google Scholar] [CrossRef]
- Guan, T.; Yang, F.; Wang, W.; Huang, X.; Jiang, B.; He, J.; Zhang, L.; Fu, F.; Li, D.; Li, R.; et al. A novel 0–3 kPa piezoresistive pressure sensor based on a Shuriken-structured diaphragm. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 816–819. [Google Scholar] [CrossRef]
- Lei, D.; Zhang, Q.; Liu, N.; Su, T.; Wang, L.; Ren, Z.; Gao, Y. An ion channel-induced self-powered flexible pressure sensor based on potentiometric transduction mechanism. Adv. Funct. Mater. 2022, 32, 2108856. [Google Scholar] [CrossRef]
- Liebetruth, M.; Kehe, K.; Steinritz, D.; Sammito, S. Systematic literature review regarding heart rate and respiratory rate measurement by means of radar technology. Sensors 2024, 24, 1003. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Ullah, S.; Fernández-García, R.; Gil, I. Wearable sensors for respiration monitoring: A review. Sensors 2023, 23, 7518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Observing mixed chemical reactions at the positive electrode in the high-performance self-powered electrochemical humidity sensor. ACS Nano 2024, 18, 34158–34170. [Google Scholar] [CrossRef] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Han, Y.; Duan, Z.; Wang, Y.; Chen, W.; Liu, D.; Yuan, Z.; Jiang, Y.; Tai, H. Improved Pressure Sensing Performance of Self-Powered Electrochemical Pressure Sensor Using a Simple Electrode Coplanar Structure. Sensors 2026, 26, 699. https://doi.org/10.3390/s26020699
Han Y, Duan Z, Wang Y, Chen W, Liu D, Yuan Z, Jiang Y, Tai H. Improved Pressure Sensing Performance of Self-Powered Electrochemical Pressure Sensor Using a Simple Electrode Coplanar Structure. Sensors. 2026; 26(2):699. https://doi.org/10.3390/s26020699
Chicago/Turabian StyleHan, Yixue, Zaihua Duan, Yi Wang, Weidong Chen, Di Liu, Zhen Yuan, Yadong Jiang, and Huiling Tai. 2026. "Improved Pressure Sensing Performance of Self-Powered Electrochemical Pressure Sensor Using a Simple Electrode Coplanar Structure" Sensors 26, no. 2: 699. https://doi.org/10.3390/s26020699
APA StyleHan, Y., Duan, Z., Wang, Y., Chen, W., Liu, D., Yuan, Z., Jiang, Y., & Tai, H. (2026). Improved Pressure Sensing Performance of Self-Powered Electrochemical Pressure Sensor Using a Simple Electrode Coplanar Structure. Sensors, 26(2), 699. https://doi.org/10.3390/s26020699

