A Low-Sidelobe Fully Metallic Ridge Gap Waveguide Antenna Array for W-Band Applications †
Abstract
1. Introduction
2. Design Process
2.1. Antenna Element
2.2. Feeding Network
2.3. Antenna Subarray
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farahani, M.; Akbari, M.; Nedil, M.; Sebak, A.; Denidni, T.A. Millimeter-Wave Dual Left/Right-Hand Circularly Polarized Beamforming Network. IEEE Trans. Antennas Propag. 2020, 68, 6118–6127. [Google Scholar] [CrossRef]
- Gan, H.; Zhou, Y.; Lan, S.; Gan, P.; Zhang, W.; Yang, C.; Song, G.; Lei, B.; Cao, L. A Broadband Antenna Array with HDI TechnologyLoaded Multi-Layer Parasitic Patches in W-Band. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2316–2320. [Google Scholar] [CrossRef]
- Singh, S.; Chauhan, S.S.; Basu, A. A Low Profile Wideband Circularly Polarized Slotted Waveguide Antenna for W-Band CubeSat Data-Links. IEEE J. Miniaturiz. Air Space Syst. 2025, 6, 19–26. [Google Scholar] [CrossRef]
- Zhou, S.Z.S.; Huang, G.H.G.; Chio, T.C.T. A Lightweight, Wideband, Dual-Circular-Polarized Waveguide Cavity Array Designed with Direct Metal Laser Sintering Considerations. IEEE Trans. Antennas Propag. 2018, 66, 675–682. [Google Scholar] [CrossRef]
- Yang, J.; Cao, Z.; Meng, H.; Li, Q.; Li, Y. A Mutually Enhanced Ka/W Dual-band Shared-aperture Horn Antenna. IEEE Trans. Antennas Propag. 2023, 72, 1234–1240. [Google Scholar] [CrossRef]
- Chen, M.; Miquel-Nardi, E.; Rico-Fernández, J.; Segura-Gómez, C.; Quevedo-Teruel, O. W-Band Compact and Lightweight Additively Manufactured Geodesic H-Plane Horn Antenna. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 4363–4367. [Google Scholar] [CrossRef]
- Mishra, G.; Sharma, S.K.; Chieh, J.S. Analysis and design of a W-band circular polarized feed horn with built-in polarizer for low f/D offset-reflector antenna. URSI Radio Sci. Bull. 2020, 2020, 17–27. [Google Scholar] [CrossRef]
- Kim, K.; Jung, S.P.A.J. A Simplified Radiation Characteristic Analysis Method for Defocus-Fed Parabolic Antennas in a W-Band Communication System. Appl. Sci. 2024, 14, 1622. [Google Scholar] [CrossRef]
- Chernikov, V.S.; Vilenskiy, A.R.; Agneessens, S.; Manholm, L.; Ivashina, M.V. A W-Band Choke-Ring Encircled Focal Plane Array of Full-Metal Elements for Reflector Antennas with over 50%-Efficiency High Cross-Over Beams. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 4578–4582. [Google Scholar] [CrossRef]
- Gauthier, G.P.; Courtay, A.; Rebeiz, G.M. Microstrip antennas on synthesized low dielectric-constant substrates. IEEE Trans. Antennas Propag. 1997, 45, 1310–1314. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, Y.; Shi, S.; Zhang, J.; Yue, R.; Wang, Y. Dielectric Constant Determination for Thin Film by Using Reflection Resonance Microstrip Line Method. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 15–21. [Google Scholar] [CrossRef]
- Kedze, K.E.; Wang, H.; Park, Y.B.P.A. Substrate Dielectric Constant Effects on the Performances of a Metasurface-Based Circularly Polarized Microstrip Patch Antenna. Int. J. Antennas Propag. 2022, 2022, 3026677. [Google Scholar] [CrossRef]
- Liu, J.L.J.; Jackson, D.J.D.R.; Long, Y.L.Y. Substrate Integrated Waveguide (SIW) Leaky-Wave Antenna with Transverse Slots. IEEE Trans. Antennas Propag. 2012, 60, 20–29. [Google Scholar] [CrossRef]
- Wang, D.; Fan, Y.; Cheng, Y.J. A W-band, Low-Cost and High-Efficiency Antenna Array Using Multilayer SIW-to-SIW Transition with Leakage-Suppressing Scheme. IEEE Trans. Antennas Propag. 2023, 71, 10014–10019. [Google Scholar] [CrossRef]
- Vosoogh, A.; Kildal, P.S.; Vassilev, V. Wideband and High-Gain Corporate-Fed Gap Waveguide Slot Array Antenna with ETSI Class II Radiation Pattern in V-Band. IEEE Trans. Antennas Propag. 2017, 65, 1823–1831. [Google Scholar] [CrossRef]
- Garcia-Marin, E.; Masa-Campos, J.L.; Sanchez-Olivares, P. Diffusion Bonding Manufacturing of High Gain W-Band Antennas for 5G Applications. IEEE Commun. Mag. 2018, 56, 21–27. [Google Scholar] [CrossRef]
- Mahmoud, A.; Tomura, T.; Ettorre, M.; González Ovejero, D.; Sauleau, R.; Hirokawa, J. High-gain tapered monopulse antenna based on octuple excitation method in diffusion bonding technology at W-band. IET Microw. Antennas Propag. 2024, 18, 317–330. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, R.; Chen, L.; Yang, S.; Liu, X.; Yang, J. Ultra-Wideband Full-Metal Planar Array Antenna with a Combination of Ridge Gap Waveguide and E-Plane Groove Gap Waveguide. IEEE Trans. Antennas Propag. 2022, 70, 8051–8058. [Google Scholar] [CrossRef]
- Yue, J.; Zhou, C.; Xiao, K.; Ding, L.; Chai, S. W-Band Low-Sidelobe Series-Fed Slot Array Antenna Based on Groove Gap Waveguide. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 908–912. [Google Scholar] [CrossRef]
- Askarzadeh, R.; Farahbakhsh, A.; Zarifi, D.; Zaman, A.U. Wideband High-Efficiency Slot Array Antenna Based on Gap Waveguide Single-Layer Feeding Network. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 519–523. [Google Scholar] [CrossRef]
- Feng, W.; Ni, X.; Shen, R.; Wang, H.; Qian, Z.; Shi, Y. High Gain 100-GHz Antenna Array Based on Mixed PCB and Machining Technique. IEEE Trans. Antennas Propag. 2022, 70, 7246–7251. [Google Scholar] [CrossRef]
- Liu, P.; Pedersen, G.F.; Zhang, S. Wideband Slot Array Antenna Fed by Open-Ended Rectangular Waveguide at W-Band. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 666–670. [Google Scholar] [CrossRef]
- Tan, W.; He, Y.; Luo, H.; Zhao, G.; Sun, H. A Wideband High-Efficiency Side-Connected Magneto-Electric Dipole Antenna Array Using Novel Feeding Technology for W-band. IEEE Trans. Antennas Propag. 2024, 72, 7383–7388. [Google Scholar] [CrossRef]
- Silveirinha, M.G.; Fernandes, C.A.; Costa, J.R. Electromagnetic characterization of textured surfaces formed by metallic pins(Article). IEEE Trans. Antennas Propag. 2008, 56, 405–415. [Google Scholar] [CrossRef]
- Yang, F.; Ma, K.; Qian, Y.; Itoh, T. Novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure. IEEE Trans. Microw. Theory Tech. 1999, 47, 2092–2098. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martin-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef]
- Josefsson, L.; Rengarajan, S.R. Slotted Waveguide Array Antennas: Theory, Analysis and Design; SciTech Publishing: Raleigh, NC, USA, 2016; ISBN 9781613531891. [Google Scholar]
- Kazemi, R.; Fallah, M.; Arand, B.A.; Armaki, H.M. Wideband stacked patch antenna array with reduced sidelobes for Ku-band applications. Electromagnetics 2021, 41, 432–447. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, X.; Niu, W.; Xia, M.; Zhang, W. Low Sidelobe Dual-Beam Metasurface Antenna Based on Taylor Distribution and Digital Filtering Methods. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 1003–1007. [Google Scholar] [CrossRef]















| Ref. | [21] 2022 | [22] 2022 | [2] 2024 | [14] 2023 | [23] 2024 | This Work |
|---|---|---|---|---|---|---|
| Structural | SIW Cavity + RGW Feed | Open-ended Waveguide-fed Slot + Hybrid Feed | SIW Slot Array + EBG for Leakage Suppression | Microstrip Patch + Multi-layer Parasitic Patches | Side-connected ME Dipole + RGW Feed | RGW Taylor-feed Network + Cavity-coupled Slot Array |
| Fabrication | Mixed PCB & Machining | Machining (CNC) | Multilayer PCB | HDI Process | PCB + Machining | Full-metal Machining |
| Array | 8 × 8 | 8 × 8 | 8 × 16 | 8 × 8 | 8 × 8 | 8 × 8 |
| Aperture (mm) | 26.0 × 34.0 × 11.4 | 32 × 32 × 4 | 32 × 18 × 1.413 | 15.2 × 15.2 × 0.5699 | 19.2 × 19.2 × 2.72 | 28.4 × 27.4 × 6.97 |
| BW (GHz) | 97.8–107 | 78–110 | 91.2–96.7 | 85.2–110 | 81.5–108.6 | 92.5–103.5 |
| SLL (dB) | <−10 | <−15 | <−15 | - | −13 | <−17.5 |
| Gain (dBi) | 24–26.5 | 24.3–26.8 | 23–24.5 | 21–22.2 | 22.5–26.6 | 25.8–26.3 |
| Eff (%) | >75 | >70 | >49.1 | 71.92 | >60 | >78 |
| XPD (dB) | <−20 | <−32 | <−50 | <−25 | <−30 | <−30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jiang, H.; Sheng, L.; Nie, P.; Feng, Y.; Wen, J.; Ji, J.; Cao, W. A Low-Sidelobe Fully Metallic Ridge Gap Waveguide Antenna Array for W-Band Applications. Sensors 2026, 26, 602. https://doi.org/10.3390/s26020602
Jiang H, Sheng L, Nie P, Feng Y, Wen J, Ji J, Cao W. A Low-Sidelobe Fully Metallic Ridge Gap Waveguide Antenna Array for W-Band Applications. Sensors. 2026; 26(2):602. https://doi.org/10.3390/s26020602
Chicago/Turabian StyleJiang, Huixia, Lili Sheng, Pengsheng Nie, Yu Feng, Jinfang Wen, Jianbo Ji, and Weiping Cao. 2026. "A Low-Sidelobe Fully Metallic Ridge Gap Waveguide Antenna Array for W-Band Applications" Sensors 26, no. 2: 602. https://doi.org/10.3390/s26020602
APA StyleJiang, H., Sheng, L., Nie, P., Feng, Y., Wen, J., Ji, J., & Cao, W. (2026). A Low-Sidelobe Fully Metallic Ridge Gap Waveguide Antenna Array for W-Band Applications. Sensors, 26(2), 602. https://doi.org/10.3390/s26020602

