Research on Gait Planning for Wind Turbine Blade Climbing Robots Based on Variable-Cell Mechanisms
Abstract
1. Introduction
2. Structural Design and Configuration Changes
- Configuration I is a planar quadrilateral configuration. Serving as the initial configuration for climbing robots, it enables flexible transitions to the other two configurations and functions as a stable state for the robot’s climbing progression;
- Configuration II is a regular hexagonal configuration. Compared to Configuration I, each leg possesses a greater range of motion, with the basal segment of each leg capable of rotating 240°. This configuration offers higher turning efficiency and enables movement along all six orientations of vertical edges even without turning.
3. Gait Generation
3.1. Configuration I Gait Generation
3.2. Configuration II Gait Generation
4. Simulation Analysis
4.1. Configuration I Gait Simulation Analysis
4.2. Configuration II Gait Simulation Analysis
5. Prototype Validation
5.1. Load Adsorption Experiment
5.2. Configuration I Gait Experiment
5.3. Configuration II Gait Experiment
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cieslak, C.; Shah, A.; Clark, B.; Childs, P. Wind-turbine inspection, maintenance and repair robotic system. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2023; Volume 87127, p. V014T37A004. [Google Scholar]
- Hernando, M.; Brunete, A.; Gambao, E. Romerin: A modular climber robot for infrastructure inspection. IFAC-PapersOnLine 2019, 52, 424–429. [Google Scholar] [CrossRef]
- Wang, B.; Luo, H.; Jin, Y.; He, M. Path planning for detection robot climbing on rotor blade surfaces of wind turbine based on neural network. Adv. Mech. Eng. 2013, 5, 760126. [Google Scholar] [CrossRef]
- Kang, X.; Feng, H.; Dai, J.S.; Yu, H. High-order based revelation of bifurcation of novel Schatz-inspired metamorphic mechanisms using screw theory. Mech. Mach. Theory 2020, 152, 103931. [Google Scholar] [CrossRef]
- Shi, X.; Yang, C.; Shao, M.; Lu, H. Design and Kinematic Analysis of a Metamorphic Mechanism-Based Robot for Climbing Wind Turbine Blades. Machines 2025, 13, 808. [Google Scholar] [CrossRef]
- Chai, X.; Kang, X.; Gan, D.; Yu, H.; Dai, J.S. Six novel 6R metamorphic mechanisms induced from three-series-connected Bennett linkages that vary among classical linkages. Mech. Mach. Theory 2021, 156, 104133. [Google Scholar] [CrossRef]
- Jia, G.; Li, B.; Huang, H.; Zhang, D. Type synthesis of metamorphic mechanisms with scissor-like linkage based on different kinds of connecting pairs. Mech. Mach. Theory 2020, 151, 103848. [Google Scholar] [CrossRef]
- Wang, R.; Song, Y.; Dai, J.S. Reconfigurability of the origami-inspired integrated 8R kinematotropic metamorphic mechanism and its evolved 6R and 4R mechanisms. Mech. Mach. Theory 2021, 161, 104245. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, B.; Jin, G.; Wang, Z. Dynamic Analysis of Metamorphic Mechanisms with Impact Effects During Configuration Transformation. Chin. J. Mech. Eng. 2024, 37, 120. [Google Scholar] [CrossRef]
- Valouch, D.; Faigl, J. Caterpillar heuristic for gait-free planning with multi-legged robot. IEEE Robot. Autom. Lett. 2023, 8, 5204–5211. [Google Scholar]
- Winkler, A.W.; Bellicoso, C.D.; Hutter, M.; Buchli, J. Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robot. Autom. Lett. 2018, 3, 1560–1567. [Google Scholar] [CrossRef]
- Neunert, M.; Farshidian, F.; Winkler, A.W.; Buchli, J. Trajectory optimization through contacts and automatic gait discovery for quadrupeds. IEEE Robot. Autom. Lett. 2017, 2, 1502–1509. [Google Scholar] [CrossRef]
- Bjelonic, M.; Grandia, R.; Harley, O.; Galliard, C.; Zimmermann, S.; Hutter, M. Whole-body mpc and online gait sequence generation for wheeled-legged robots. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; IEEE: New York, NY, USA, 2021; pp. 8388–8395. [Google Scholar]
- He, J.; Gao, F. Mechanism, actuation, perception, and control of highly dynamic multilegged robots: A review. Chin. J. Mech. Eng. 2020, 33, 79. [Google Scholar] [CrossRef]
- Chong, B.; Aydin, Y.O.; Rieser, J.M.; Sartoretti, G.; Wang, T.; Whitman, J.; Kaba, A.; Aydin, E.; McFarland, C.; Cruz, K.D.; et al. A general locomotion control framework for multi-legged locomotors. Bioinspiration Biomim. 2022, 17, 046015. [Google Scholar] [CrossRef] [PubMed]
- Belter, D.; Wietrzykowski, J.; Skrzypczyński, P. Employing natural terrain semantics in motion planning for a multi-legged robot. J. Intell. Robot. Syst. 2019, 93, 723–743. [Google Scholar] [CrossRef]
- Belter, D. Efficient modeling and evaluation of constraints in path planning for multi-legged walking robots. IEEE Access 2019, 7, 107845–107862. [Google Scholar] [CrossRef]
- Buchanan, R.; Wellhausen, L.; Bjelonic, M.; Bandyopadhyay, T.; Kottege, N.; Hutter, M. Perceptive whole-body planning for multilegged robots in confined spaces. J. Field Robot. 2021, 38, 68–84. [Google Scholar] [CrossRef]
- Tennakoon, E.; Peynot, T.; Roberts, J.; Kottege, N. Probe-before-step walking strategy for multi-legged robots on terrain with risk of collapse. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: New York, NY, USA, 2020; pp. 5530–5536. [Google Scholar]
- Liu, Z.; Zhuang, H.C.; Gao, H.B.; Deng, Z.Q.; Ding, L. Static force analysis of foot of electrically driven heavy-duty six-legged robot under tripod gait. Chin. J. Mech. Eng. 2018, 31, 63. [Google Scholar] [CrossRef]
- Roy, S.S.; Pratihar, D.K. Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot. Robot. Comput.-Integr. Manuf. 2013, 29, 400–416. [Google Scholar] [CrossRef]
- Goswami, A. Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 1999, 18, 523–533. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, K.; Yang, X.; Cui, X. The gait planning of hexapod robot based on CPG with feedback. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420930503. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, X.; Ding, L.; Wang, J.; Liu, T.; Gao, H. Fault-tolerant tripod gait planning and verification of a hexapod robot. Appl. Sci. 2020, 10, 2959. [Google Scholar] [CrossRef]
- Tsounis, V.; Alge, M.; Lee, J.; Farshidian, F.; Hutter, M. Deepgait: Planning and control of quadrupedal gaits using deep reinforcement learning. IEEE Robot. Autom. Lett. 2020, 5, 3699–3706. [Google Scholar] [CrossRef]
- Xu, K.; Zi, P.; Ding, X. Gait analysis of quadruped robot using the equivalent mechanism concept based on metamorphosis. Chin. J. Mech. Eng. 2019, 32, 8. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, F. Efficient motion generation for a six-legged robot walking on irregular terrain via integrated foothold selection and optimization-based whole-body planning. Robotica 2018, 36, 333–352. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Ding, X.L.; Rovetta, A. Analysis of typical locomotion of a symmetric hexapod robot. Robotica 2010, 28, 893–907. [Google Scholar] [CrossRef]
- Zha, F.; Chen, C.; Guo, W.; Zheng, P.; Shi, J. A free gait controller designed for a heavy load hexapod robot. Adv. Mech. Eng. 2019, 11, 1687814019838369. [Google Scholar] [CrossRef]
- Grzelczyk, D.; Awrejcewicz, J. Modeling and control of an eight-legged walking robot driven by different gait generators. Int. J. Struct. Stab. Dyn. 2019, 19, 1941009. [Google Scholar] [CrossRef]
- Go, Y.; Yin, X.; Bowling, A. Navigability of multi-legged robots. IEEE/ASME Trans. Mechatron. 2006, 11, 1–8. [Google Scholar] [CrossRef]
- Xu, F.; Liu, X.; Zhao, X.; Yue, M.; Xing, W. Adaptive Leg Motion Planning Method for Spherical Multi-Retractable Legged Robots Using Deep Reinforcement Learning. In IEEE Transactions on Cognitive and Developmental Systems; IEEE: New York, NY, USA, 2025. [Google Scholar]
- Chen, G.; Han, Y.; Li, Y.; Shen, J.; Tu, J.; Yu, Z.; Zhang, J.; Cheng, H.; Zhu, L.; Dong, F. Autonomous gait switching method and experiments of a hexapod walking robot for Mars environment with multiple terrains. Intell. Serv. Robot. 2024, 17, 533–553. [Google Scholar] [CrossRef]
- Gong, C.; Fan, L.; Xu, C.; Wang, D. Agile Plane Transition of a Hexapod Climbing Robot. IEEE Robot. Autom. Lett. 2025, 10, 5959–5966. [Google Scholar] [CrossRef]
- Nadan, P.; Backus, S.; Johnson, A.M. LORIS: A lightweight free-climbing robot for extreme terrain exploration. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; IEEE: New York, NY, USA, 2024; pp. 18480–18486. [Google Scholar]
- Fang, S.; Chen, G.; Zhou, Y.; Wang, X. Advancing Legged Wall Climbing Robot Performance Through Dynamic Contact-Integrated Climbing Model. J. Mech. Robot. 2024, 16, 061016. [Google Scholar] [CrossRef]
- Lou, S.; Wei, Z.; Guo, J.; Ding, Y.; Liu, J.; Song, A. Current Status and Trends of Wall-Climbing Robots Research. Machines 2025, 13, 521. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, Q.; Zhang, Z.; Wu, S.; Shen, Y.; Xu, F. Structural design and optimization of adaptive soft adhesion bionic climbing robot. Autom. Constr. 2025, 171, 105975. [Google Scholar] [CrossRef]



















| Joint Designation | Joint Name | Joint Type | Function Description |
|---|---|---|---|
| A, E, F | Corner joint | Active Servo Joint | The drive mechanism transforms the trunk from a rectangular to a regular hexagonal configuration, with a rotation range of 0–120°. |
| B, D, G, I | Double-ended swing joint | Active Servo Joint | Control the front and rear ends of the body to bend vertically and horizontally from 0 to 90 degrees, enabling it to traverse over the leading or trailing edge of a blade. |
| J | Passive joint rotation | Passive joint | Connect carbon fiber plates to adaptively follow trunk deformation. |
| C, H | Motor Connectors | structural components | Connect the motor to the carbon fiber plate to transmit torque. |
| L1-1, L3-1, L4-1, L6-1 | Clamp the femoral base joint | Active Servo Joint | Drive the clamping leg to swing forward and backward, enabling adjustment within a ±30° range. |
| L2-1, L5-1 | Weight-bearing leg basal joint | Active Servo Joint | Drive the load-bearing legs to swing forward and backward, enabling adjustment within a ±30° range. |
| LX-2 (X = 1~6) | Hock joint | Active Servo Joint | Drive the hip joint to swing within the leg plane, adjusting the leg posture. |
| LX-3 (X = 1~6) | tibial joint | Active Servo Joint | Drive the tibial segment to swing within the leg plane, coordinating with the foot end to conform to the surface. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lu, H.; Wang, G.; Zhang, W.; Shao, M.; Shi, X. Research on Gait Planning for Wind Turbine Blade Climbing Robots Based on Variable-Cell Mechanisms. Sensors 2026, 26, 547. https://doi.org/10.3390/s26020547
Lu H, Wang G, Zhang W, Shao M, Shi X. Research on Gait Planning for Wind Turbine Blade Climbing Robots Based on Variable-Cell Mechanisms. Sensors. 2026; 26(2):547. https://doi.org/10.3390/s26020547
Chicago/Turabian StyleLu, Hao, Guanyu Wang, Wei Zhang, Mingyang Shao, and Xiaohua Shi. 2026. "Research on Gait Planning for Wind Turbine Blade Climbing Robots Based on Variable-Cell Mechanisms" Sensors 26, no. 2: 547. https://doi.org/10.3390/s26020547
APA StyleLu, H., Wang, G., Zhang, W., Shao, M., & Shi, X. (2026). Research on Gait Planning for Wind Turbine Blade Climbing Robots Based on Variable-Cell Mechanisms. Sensors, 26(2), 547. https://doi.org/10.3390/s26020547

