Advanced Acoustic Monitoring Using Psychoacoustic Heatmap Machine Learning Models for Noise Impact Prediction in Air-Conditioned Building Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Multidimensional Sound Quality Assessment
2.1.1. Multidimensional Objective Acoustic Characterization
2.1.2. Multidimensional Subjective Perceptual Responses
2.2. Psychoacoustic Heatmap Machine Learning Model (PHMLM)
2.2.1. Psychoacoustic Heatmaps of 30-s Soundtracks
2.2.2. Architecture of Neural Network for Machine Learning
2.2.3. Machine Learning Training
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics of Sound Quality Assessments
3.1.1. Multidimensional Objective Acoustic Characteristics
3.1.2. Multidimensional Subjective Perceptual Responses to the Replayed Sounds
3.2. Psychoacoustic Heatmap Machine Learning Model (PHMLM)
3.2.1. Predictive Performance of PHMLM-E, PHMLM-P, and PHMLM-A
3.2.2. Bivariate Correlation Test Results
3.2.3. Predictive Performance of PHMLM-EPA
4. Discussion
4.1. Multidimensional Acoustic Characteristics Captured by a Psychoacoustic Heatmap
4.2. Integration of Machine Learning and EPA Model
4.3. Predictive Performance of PHMLM
4.4. Implications for Building Design and Engineering Practice
4.5. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PHMLM | Psychoacoustic Heatmap Machine Learning Models |
| E | Evaluation |
| P | Potency |
| A | Activity |
| EPA | Evaluation, Potency, and Activity |
| PPS | Psychoacoustics Perception Scale |
| TRM | Traditional Regression Models |
| WHO | World Health Organization |
| NC | Noise Criteria |
| NR | Noise Rating |
| RC | Room Criteria |
| ANN | Artificial Neural Network |
| FC | Fully Connected |
| MP | Max Pooling |
| conv | Convolutional |
| CI | Confidence Interval |
| SD | Standard Deviation |
| IQR | Interquartile Range |
| MAE | Mean Absolute Errors |
| CNN | Convolutional Neural Network |
| SGDM | Stochastic Gradient Descent with Momentum |
| SVM | Support Vector Machines |
| RBF | Radial Basis Function |
| MLPs | Multilayer Perceptrons |
Appendix A
Appendix A.1. Equations of the Acoustic Metrics
Appendix A.2. Equations of the Psychoacoustic Metrics
Appendix A.3. Equations of Statistical Analysis
References
- Meng, Q.; Zhang, S.; Kang, J. Effects of typical dining styles on conversation behaviours and acoustic perception in restaurants in China. Build. Environ. 2017, 121, 148–157. [Google Scholar] [CrossRef]
- Soeta, Y.; Shimokura, R. Sound quality evaluation of air-conditioner noise based on factors of the autocorrelation function. Appl. Acoust. 2017, 124, 11–19. [Google Scholar] [CrossRef]
- Mak, C.M.; Ma, K.W.; Wong, H.M. Prediction and Control of Noise and Vibration from Ventilation Systems, 1st ed.; Taylor & Francis: Oxfordshire, UK, 2023. [Google Scholar]
- Liddament, M.W. A review of ventilation and the quality of ventilation air. Indoor Air 2000, 10, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Fry, A. Noise Control in Building Services; Elsevier: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Munjal, M.J. Acoustics of Ducts and Mufflers; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Xue, R.; Mak, C.M.; Cai, C.; Ma, K.W. An infinity tube with an expansion chamber for noise control in the ductwork system. Sensors 2022, 23, 305. [Google Scholar] [CrossRef]
- Siddique, M.F.; Zaman, W.; Umar, M.; Kim, J.-Y.; Kim, J.-M. A Hybrid Deep Learning Framework for Fault Diagnosis in Milling Machines. Sensors 2025, 25, 5866. [Google Scholar] [CrossRef]
- Li, X.; Yao, Z.; Zhang, T.; Chang, Z. Sensing While Drilling and Intelligent Monitoring Technology: Research Progress and Application Prospects. Sensors 2025, 25, 6368. [Google Scholar] [CrossRef]
- Chen, M.; Lu, Y.; Wu, W.; Ye, Y.; Wei, B.; Ni, Y. Multi-Scale Frequency-Aware Transformer for Pipeline Leak Detection Using Acoustic Signals. Sensors 2025, 25, 6390. [Google Scholar] [CrossRef]
- ISO 1996-1:2016; Acoustics—Description, Measurement and Assessment of Environmental Noise—Part 1: Basic Quantities and Assessment Procedures. International Organization for Standardization: Geneva, Switzerland, 2016.
- ANSI/ASA S12.2-2019; Criteria For Evaluating Room Noise. Acoustical Society of America: Melville, NY, USA, 2019.
- Hay, B.; Kemp, M.F. Measurements of noise in air conditioned, landscaped offices. J. Sound. Vib. 1972, 23, 363–373. [Google Scholar] [CrossRef]
- Deng, Z.; Xie, H.; Kang, J. The effectiveness of acoustic treatments in general hospital wards in China. Build. Environ. 2023, 244, 110728. [Google Scholar] [CrossRef]
- Ma, K.W.; Mak, C.M.; Wong, H.M. Development of a subjective scale for sound quality assessments in building acoustics. J. Build. Eng. 2020, 29, 101177. [Google Scholar] [CrossRef]
- Zwicker, E.; Fastl, H. Psychoacoustics: Facts and Models, 3rd ed.; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- ISO 532-1:2017; Acoustics—Methods for Calculating Loudness—Part 1: Zwicker Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- Tang, S.K. Performance of noise indices in air-conditioned landscaped office buildings. J. Acoust. Soc. Am. 1997, 102, 1657–1663. [Google Scholar] [CrossRef]
- Segura-Garcia, J.; Navarro-Ruiz, J.M.; Perez-Solano, J.J.; Montoya-Belmonte, J.; Felici-Castell, S.; Cobos, M.; Torres-Aranda, A.M. Spatio-temporal analysis of urban acoustic environments with binaural psycho-acoustical considerations for IoT-based applications. Sensors 2018, 18, 690. [Google Scholar] [CrossRef]
- ISO/TS 15666:2003; Acoustics—Assessment of Noise Annoyance by Means of Social and Socio-Acoustic Surveys. International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 12913-1:2014; Acoustics—Soundscape—Part 1: Definition and Conceptual Framework. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 12913-2:2018; Acoustics—Soundscape—Part 2: Data Collection and Reporting Requirements. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 12913-3:2019; Acoustics—Soundscape—Part 3: Data Analysis. International Organization for Standardization: Geneva, Switzerland, 2019.
- Soeta, Y.; Kagawa, H. Three dimensional psychological evaluation of aircraft noise and prediction by physical parameters. Build. Environ. 2020, 167, 106445. [Google Scholar] [CrossRef]
- Lian, Y.; Ou, D.; Tan, R. The effects of sound source dominance and pressure level on cognitive performance and environmental perception in green space. Appl. Acoust. 2025, 240, 110897. [Google Scholar] [CrossRef]
- Osgood, C.E. The nature and measurement of meaning. Psychol. Bull. 1952, 49, 197–273. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.W.; Wong, H.M.; Mak, C.M. A systematic review of human perceptual dimensions of sound: Meta-analysis of semantic differential method applications to indoor and outdoor sounds. Build. Environ. 2018, 133, 123–150. [Google Scholar] [CrossRef]
- Takada, M.; Tanaka, K.; Iwamiya, S.-I. Relationships between auditory impressions and onomatopoeic features for environmental sounds. Acoust. Sci. Technol. 2006, 27, 67–79. [Google Scholar] [CrossRef]
- Galiana, M.; Llinares, C.; Page, Á. Subjective evaluation of music hall acoustics: Response of expert and non-expert users. Build. Environ. 2012, 58, 1–13. [Google Scholar] [CrossRef]
- Ma, K.W.; Mak, C.M.; Wong, H.M. Acoustical measurements and prediction of psychoacoustic metrics with spatial variation. Appl. Acoust. 2020, 168, 107450. [Google Scholar] [CrossRef]
- Axelsson, Ö.; Nilsson, M.E.; Berglund, B. A principal components model of soundscape perception. J. Acoust. Soc. Am. 2010, 128, 2836–2846. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Environmental Noise Guidelines for the European Region; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Ma, K.W.; Wong, H.M.; Mak, C.M. Dental Environmental Noise Evaluation and Health Risk Model Construction to Dental Professionals. Int. J. Environ. Res. Public. Health 2017, 14, 1084. [Google Scholar] [CrossRef]
- World Health Organization. Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Zhang, X.; Ba, M.; Kang, J.; Meng, Q. Effect of soundscape dimensions on acoustic comfort in urban open public spaces. Appl. Acoust. 2018, 133, 73–81. [Google Scholar] [CrossRef]
- Yonemura, M.; Lee, H.; Sakamoto, S. Subjective evaluation on the annoyance of environmental noise containing low-frequency tonal components. Int. J. Environ. Res. Public. Health 2021, 18, 7127. [Google Scholar] [CrossRef]
- Ma, K.W.; Mak, C.M.; Wong, H.M. The perceptual and behavioral influence on dental professionals from the noise in their workplace. Appl. Acoust. 2020, 161, 107164. [Google Scholar] [CrossRef]
- Erfanian, M.; Mitchell, A.J.; Kang, J.; Aletta, F. The psychophysiological implications of soundscape: A systematic review of empirical literature and a research agenda. Int. J. Environ. Res. Public. Health 2019, 16, 3533. [Google Scholar]
- Jiang, J.; Trundle, P.; Ren, J. Medical image analysis with artificial neural networks. Comput. Med. Imaging Graph. 2010, 34, 617–631. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Vican, I.; Kreković, G.; Jambrošić, K. Improved fetal heartbeat detection using pitch shifting and psychoacoustics. Biomed. Signal Process. Control 2024, 90, 105850. [Google Scholar] [CrossRef]
- Barros, A.; Geluykens, M.; Pereira, F.; Freitas, E.; Faria, S.; Goubert, L.; Vuye, C. Beyond noise levels: Vehicle classification using psychoacoustic indicators from pass-by road traffic noise and their correlations with speed and temperature. Appl. Acoust. 2023, 214, 109716. [Google Scholar] [CrossRef]
- Potočnik, P.; Olmos, B.; Vodopivec, L.; Susič, E.; Govekar, E. Condition classification of heating systems valves based on acoustic features and machine learning. Appl. Acoust. 2021, 174, 107736. [Google Scholar] [CrossRef]
- Hvastja, A.; Ćirić, D.; Milivojčević, M.; Prezelj, J. Assessing air and noise pollution through acoustic classification of vehicles fuel types using deep learning. Heliyon 2025, 11, e43426. [Google Scholar] [CrossRef]
- Souli, S.; Lachiri, Z. Audio sounds classification using scattering features and support vectors machines for medical surveillance. Appl. Acoust. 2018, 130, 270–282. [Google Scholar] [CrossRef]
- Morais-Quilez, I.; Graña, M. Formula One® Track Classification by Machine Learning Applied on Car Engine Sound. Procedia Comput. Sci. 2025, 270, 3095–3104. [Google Scholar] [CrossRef]
- Nowakowski, T.; Tomaszewski, F.; Komorski, P.; Szymański, G.M. Tram gearbox condition monitoring method based on trackside acoustic measurement. Measurement 2023, 207, 112358. [Google Scholar]
- Li, X.; Luo, N.; Yu, F.; Li, J.; Li, K.; Li, Y.; Zhao, Z.; Liu, Y.; Shi, X. Human Auditory Representation Learning for Cross-Dialect Bird Species Recognition. Ecol. Inform. 2025, 93, 103554. [Google Scholar]
- Molina-Moreno, M.; de la Prida, D.; Azpicueta-Ruiz, L.A.; Pedrero, A. A noise monitoring system with domain adaptation based on standard parameters measured by sound analyzers. Appl. Acoust. 2024, 218, 109892. [Google Scholar] [CrossRef]
- Wu, C.; Redonnet, S. A simple yet efficient data-driven model for the prediction of aircraft noise impact. Aerosp. Sci. Technol. 2025, 163, 110286. [Google Scholar] [CrossRef]
- O’Reilly, D.; White, M.; Langenheim, N.; Alambeigi, P.; Huang, X.; Yang, T. Receiver-centric mapping of pedestrian noise annoyance: A cost-effective approach using random forest, psychoacoustic metrics and open-source data. Sustain. Cities Soc. 2025, 130, 106651. [Google Scholar]
- Dai, R.; Zhao, J.; Zhao, W.; Ding, W.; Huang, H. Exploratory study on sound quality evaluation and prediction for engineering machinery cabins. Measurement 2025, 253, 117684. [Google Scholar] [CrossRef]
- Ma, K.W.; Mak, C.M.; Wong, H.M. Development of a sound quality model for noise impact prediction in building acoustics. J. Build. Eng. 2025, 111, 113183. [Google Scholar] [CrossRef]
- Gliem, J.A.; Gliem, R.R. Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. In Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education; The Ohio State University: Columbus, OH, USA, 2003. [Google Scholar]
- Engel, M.S.; Fiebig, A.; Pfaffenbach, C.; Fels, J. A review of the use of psychoacoustic indicators on soundscape studies. Curr. Pollut. Rep. 2021, 7, 359–378. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995. [Google Scholar]
- Dixon, W.J.; Massey, F.J., Jr. Introduction to Statistical Analysis, 4th ed.; McGraw-Hill Book Company: New York, NY, USA, 1983. [Google Scholar]
- Razali, N.M.; Wah, Y.B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Mak, C.M.; Wang, Z. Recent advances in building acoustics: An overview of prediction methods and their applications. Build. Environ. 2015, 91, 118–126. [Google Scholar] [CrossRef]
- Schmuckler, M.A. What is ecological validity? A dimensional analysis. Infancy 2001, 2, 419–436. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Xiong, Y.; Yang, Y. Effects of soundscape perception on visiting experience in a renovated historical block. Build. Environ. 2019, 165, 106375. [Google Scholar] [CrossRef]
- Liu, C.; Kang, J.; Xie, H. Effect of sound on visual attention in large railway stations: A case study of St. Pancras railway station in London. Build. Environ. 2020, 185, 107177. [Google Scholar] [CrossRef]
- Erfanian, M.; Mitchell, A.; Aletta, F.; Kang, J. Psychological well-being and demographic factors can mediate soundscape pleasantness and eventfulness: A large sample study. J. Environ. Psychol. 2021, 77, 101660. [Google Scholar] [CrossRef]
- Li, M.; Han, R.; Xie, H.; Zhang, R.; Guo, H.; Zhang, Y.; Kang, J. Mandarin Chinese translation of the ISO-12913 soundscape attributes to investigate the mechanism of soundscape perception in urban open spaces. Appl. Acoust. 2024, 215, 109728. [Google Scholar] [CrossRef]






| Metric | Unit | Mean | SD | 95% CI | 25%Tile | Median | 75%Tile | IQR |
|---|---|---|---|---|---|---|---|---|
| LZeq | dB | 68.4 | 5.82 | [68.1, 68.8] | 64.5 | 68.6 | 72.5 | 8.00 |
| LAeq | dBA | 48.6 | 5.91 | [48.3, 48.9] | 44.1 | 48.7 | 53.0 | 8.88 |
| LA10 | dBA | 49.0 | 5.89 | [48.7, 49.3] | 44.4 | 49.1 | 53.5 | 9.08 |
| LA50 | dBA | 48.5 | 5.98 | [48.1, 48.8] | 44.0 | 48.6 | 52.9 | 8.89 |
| LA90 | dBA | 48.1 | 6.02 | [47.7, 48.4] | 43.5 | 48.2 | 52.6 | 9.08 |
| LA10–LA90 | dBA | 0.94 | 0.46 | [0.91, 0.96] | 0.68 | 0.78 | 0.93 | 0.25 |
| NC | NC | 45.2 | 6.04 | [44.9, 45.5] | 41.0 | 46.0 | 50.0 | 9.00 |
| NR | NR | 46.0 | 5.67 | [45.7, 46.3] | 42.0 | 46.0 | 50.0 | 8.00 |
| RC | RC | 45.2 | 5.75 | [44.9, 45.6] | 41.0 | 46.0 | 50.0 | 9.00 |
| Metric | Unit | Mean | SD | 95% CI | 25%Tile | Median | 75%Tile | IQR |
|---|---|---|---|---|---|---|---|---|
| LN | phon | 68.7 | 7.93 | [68.2, 69.1] | 63.4 | 68.6 | 73.2 | 9.81 |
| N | sone | 8.50 | 5.20 | [8.21, 8.8] | 5.07 | 7.26 | 10.00 | 4.93 |
| N5 | sone | 8.81 | 5.34 | [8.51, 9.12] | 5.45 | 7.62 | 10.44 | 4.99 |
| N95 | sone | 7.83 | 4.87 | [7.55, 8.1] | 4.67 | 6.70 | 9.32 | 4.65 |
| S | acum | 1.13 | 0.19 | [1.12, 1.14] | 1.02 | 1.16 | 1.25 | 0.22 |
| S5 | acum | 1.24 | 0.21 | [1.23, 1.25] | 1.13 | 1.25 | 1.35 | 0.22 |
| S95 | acum | 1.05 | 0.19 | [1.04, 1.06] | 0.93 | 1.08 | 1.17 | 0.24 |
| R | asper | 0.08 | 0.02 | [0.08, 0.08] | 0.07 | 0.08 | 0.10 | 0.03 |
| R5 | asper | 0.13 | 0.04 | [0.12, 0.13] | 0.10 | 0.12 | 0.15 | 0.04 |
| R95 | asper | 0.05 | 0.01 | [0.05, 0.05] | 0.04 | 0.05 | 0.06 | 0.02 |
| FS | vacil | 0.03 | 0.02 | [0.02, 0.03] | 0.01 | 0.02 | 0.04 | 0.03 |
| FS5 | vacil | 0.03 | 0.03 | [0.03, 0.04] | 0.01 | 0.02 | 0.05 | 0.04 |
| FS95 | vacil | 0.02 | 0.02 | [0.02, 0.02] | 0.004 | 0.01 | 0.03 | 0.02 |
| fMod | Hertz | 131 | 35 | [129, 133] | 111 | 131 | 150 | 39 |
| N5–N95 | sone | 0.99 | 0.55 | [0.96, 1.02] | 0.64 | 0.86 | 1.12 | 0.48 |
| Parameter | Value/Type | Description/Justification |
|---|---|---|
| Solver | sgdm | Stochastic Gradient Descent with Momentum |
| Momentum | 0.95 | Standard for stable convergence |
| InitialLearnRate | 0.001 | Optimal for transfer learning |
| LearnRateSchedule | ‘piecewise’ | Step decay for long-term convergence |
| LearnRateDropPeriod | 400 | Drop every 400 epochs (10× MiniBatchSize) |
| LearnRateDropFactor | 0.6 | Conservative decay (60% reduction) |
| MiniBatchSize | 80 | Balances memory/gradient stability |
| MaxEpochs | 4000 | Required by piecewise schedule (10 drops) |
| Shuffle | ‘every-epoch’ | Prevents overfitting standard practice |
| ValidationFrequency | 12 | Every 12 iterations (efficient monitoring) |
| ValidationPatience | Inf | No early stopping; relies on learning rate schedule |
| Verbose | false | Clean output |
| Dependent Variable | PHMLM-EPA (Adjusted R2) | TRM-EPA | LAeq | LA10 | LA50 | LA90 | NC | NR | RC | LN | N | N5 | N95 | R | R5 | R95 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EPA-score | 0.63 | 95% | 95% | 102% | 95% | 95% | 117% | 109% | 95% | 174% | 174% | 186% | 174% | 276% | 295% | 276% |
| O1: Discomfortable | 0.43 | 63% | 87% | 87% | 80% | 80% | 104% | 104% | 80% | 156% | 156% | 156% | 144% | 215% | 233% | 233% |
| O2: Annoying | 0.43 | 55% | 87% | 87% | 79% | 79% | 95% | 103% | 79% | 251% | 251% | 251% | 251% | 347% | 378% | 347% |
| O3: Stressful | 0.43 | 58% | 87% | 87% | 87% | 87% | 95% | 95% | 79% | 183% | 183% | 183% | 183% | 272% | 295% | 272% |
| O4: Unacceptable | 0.44 | 65% | 91% | 91% | 91% | 91% | 107% | 107% | 91% | 174% | 174% | 189% | 174% | 258% | 280% | 258% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ma, K.W.; Mak, C.M.; Chung, F.-L.; Wong, H.M. Advanced Acoustic Monitoring Using Psychoacoustic Heatmap Machine Learning Models for Noise Impact Prediction in Air-Conditioned Building Environments. Sensors 2026, 26, 544. https://doi.org/10.3390/s26020544
Ma KW, Mak CM, Chung F-L, Wong HM. Advanced Acoustic Monitoring Using Psychoacoustic Heatmap Machine Learning Models for Noise Impact Prediction in Air-Conditioned Building Environments. Sensors. 2026; 26(2):544. https://doi.org/10.3390/s26020544
Chicago/Turabian StyleMa, Kuen Wai, Cheuk Ming Mak, Fu-Lai Chung, and Hai Ming Wong. 2026. "Advanced Acoustic Monitoring Using Psychoacoustic Heatmap Machine Learning Models for Noise Impact Prediction in Air-Conditioned Building Environments" Sensors 26, no. 2: 544. https://doi.org/10.3390/s26020544
APA StyleMa, K. W., Mak, C. M., Chung, F.-L., & Wong, H. M. (2026). Advanced Acoustic Monitoring Using Psychoacoustic Heatmap Machine Learning Models for Noise Impact Prediction in Air-Conditioned Building Environments. Sensors, 26(2), 544. https://doi.org/10.3390/s26020544

