A Review on Hierarchical Nanostructures for Electrochemical Sensors
Abstract
1. Introduction
2. Synthesis of Hierarchical Nanomaterials
2.1. Synthetic Approach Based on Direct Growth
2.2. Synthetic Approach Based on Nanomaterials Assembly
2.3. Synthetic Approach Based on Templates
3. Performance of Hierarchical Nanostructures-Based Electrochemical Sensors
3.1. Electrode Materials Prepared with the Direct Growth Approach
3.2. Electrode Materials Prepared with Nanomaterials Assembly Approach
3.2.1. Nanoparticle/Nanorods
3.2.2. Nanoparticles/Nanotubes
3.2.3. Nanotubes and Nanowires
3.2.4. Core-Shell Structures
3.2.5. Sandwich Structure
3.3. Electrode Materials Prepared with Template Approach
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LOD | Limit of Detection |
| NPs | Nanoparticles |
| NRs | Nanorods |
| NTs | Nanotubes |
| NWs | Nanowires |
| CVD | Chemical Vapor Deposition |
| CNT | Carbon Nanotubes |
| DLVO | Derjaguin–Landau–Verwey–Overbeek theory |
| PMMA | Polymethyl methacrylate |
| SCPE | Screen-Printed Carbon Electrode |
| GCE | Glassy Carbon Electrode |
| MWCNT | Multi-Walled Carbon Nanotubes |
| CEA | Carcinoembryonic Antigen |
| PDOT | Poly (3,4-ethylenedioxythiophene) |
| PSS | Poly (styrene sulfonate) |
| MOF | Metal–Organic Framework |
| AA | Ascorbic Acid |
| PBS | Phosphate-Buffered Saline |
References
- Walcarius, A.; Minteer, S.D.; Wang, J.; Lin, Y.; Merkoçi, A. Nanomaterials for bio-functionalized electrodes: Recent trends. J. Mater. Chem. B 2013, 1, 4878–4908. [Google Scholar] [CrossRef]
- Yao, H.; Gao, H. Multi-scale cohesive laws in hierarchical materials. Int. J. Solids Struct. 2007, 44, 8177–8193, Reprint in Int. J. Solids Struct. 2008, 45, 3627–3643. [Google Scholar] [CrossRef]
- Yao, H.; Gao, H. Mechanics of robust and releasable adhesion in biology: Bottom–up designed hierarchical structures of gecko. J. Mech. Phys. Solids 2006, 54, 1120–1146. [Google Scholar] [CrossRef]
- Kempahanumakkagari, S.; Deep, A.; Kim, K.H.; Kumar Kailasa, S.; Yoon, H.O. Nanomaterial-based electrochemical sensors for arsenic—A review. Biosens. Bioelectron. 2017, 95, 106–116. [Google Scholar] [CrossRef]
- Wu, L.; Li, Y.; Fu, Z.; Su, B.L. Hierarchically structured porous materials: Synthesis strategies and applications in energy storage. Natl. Sci. Rev. 2020, 7, 1667–1701. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, H.; Shu, T.; Chen, X.; Huang, Y.; Hu, X. Rational Design of Three-Dimensional Hierarchical Nanomaterials for Asymmetric Supercapacitors. ChemElectroChem 2017, 4, 2428–2441. [Google Scholar] [CrossRef]
- Trogadas, P.; Ramani, V.; Strasser, P.; Fuller, T.F.; Coppens, M.O. Hierarchically Structured Nanomaterials for Electrochemical Energy Conversion. Angew. Chem. Int. Ed. Engl. 2016, 55, 122–148. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, S.; Tang, Z.; Yao, Z.; Zhang, T.; Xiang, C.; Qian, L. Nanostructured materials for next-generation display technology. Nat. Rev. Electr. Eng. 2025, 2, 263–276. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, W.; Wang, X. 3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis. Electrochem. Energy Rev. 2021, 4, 269–335. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef] [PubMed]
- Gopi, S.; Wang, S.-F. Nanoengineered Hierarchical Cobalt-Nickel-Tungstate-Anchored Polypyrrole Nanocomposite for the Electrochemical Determination of Antiscald Agent in Food Samples: Diphenylamine. ACS Appl. Nano Mater. 2025, 8, 924–934. [Google Scholar] [CrossRef]
- Chen, A.; Chatterjee, S. Nanomaterials-based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Jin, W. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Prog. Mater. Sci. 2019, 106, 100574. [Google Scholar] [CrossRef]
- Raimondi, F.; Scherer, G.G.; Kotz, R.; Wokaun, A. Nanoparticles in energy technology: Examples from electrochemistry and catalysis. Angew. Chem. Int. Ed. Engl. 2005, 44, 2190–2209. [Google Scholar] [CrossRef]
- Riley, D.J. Electrochemistry in nanoparticle science. Curr. Opin. Colloid Interface Sci. 2002, 7, 186–192. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Jin, W. Nanomaterials-based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ. Anal. Chem. 2017, 13, 10–23. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, W. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens. Bioelectron. 2017, 89, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Maji, S.; Shrestha, L.K.; Ariga, K. Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. Nanomaterials 2021, 11, 2146. [Google Scholar] [CrossRef]
- Khanna, P.; Kaur, A.; Goyal, D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods 2019, 163, 105656. [Google Scholar] [CrossRef] [PubMed]
- Nagime, P.V.; Chandak, V.S. A comprehensive review of nanomaterials synthesis: Physical, chemical, and biological approaches and emerging challenges. Biocatal. Agric. Biotechnol. 2024, 62, 103458. [Google Scholar] [CrossRef]
- Rosyidah, A.; Purbani, D.C.; Pratiwi, R.D.; Muttaqien, S.E.; Nantapong, N.; Warsito, M.F.; Fikri, M.N.; Ruth, F.; Gustini, N.; Syahputra, G.; et al. Eco-friendly synthesis of gold nanoparticles by marine microalgae Synechococcus moorigangae: Characterization, antimicrobial, and antioxidant properties. Kuwait J. Sci. 2024, 51, 100194. [Google Scholar] [CrossRef]
- Bulgariu, L. Ecological Synthesis of Precious Metal Nanoparticles: Harnessing the Potential of Marine Algae Biomass. Nanomaterials 2025, 15, 1492. [Google Scholar] [CrossRef]
- Noguti, F.S.; Celestino, M.F.; Mori, L.T.; Martins, J.P.P.; Linde, G.A.; Colauto, N.B.; Busso, C.; Eising, R. Sustainable Synthesis of Silver Nanoparticles (Chemical vs Biological) and Their Antimicrobial Activity Against Clinical Pathogens. ACS Omega 2025, 10, 45656–45670. [Google Scholar] [CrossRef]
- Li, G.-R.; Xu, H.; Lu, X.-F.; Feng, J.-X.; Tong, Y.-X.; Su, C.-Y. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 2013, 5, 4056. [Google Scholar] [CrossRef]
- Zak, A.K.; Abd Majid, W.H.; Wang, H.Z.; Yousefi, R.; Moradi, A.; Ren, Z.F. Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason. Sonochem. 2013, 20, 395–400. [Google Scholar]
- Lahewil, A.S.Z.; Zyoud, S.H.; Ahmed, N.M.; Omar, A.F.; Azman, N.Z.N. Synthesis ZnO nanoclusters micro active area using continues wave blue laser-assisted chemical bath deposition based on UV photodetector. Optik 2022, 260, 169099. [Google Scholar] [CrossRef]
- Brune, H. Microscopic view of epitaxial metal growth nucleation and aggregation. Surf. Sci. Rep. 1998, 31, 121–229. [Google Scholar] [CrossRef]
- Ben-Jacob, E.; Garik, P. The formation of patterns in nonequilibrium growth. Nature 1990, 343, 523–530. [Google Scholar] [CrossRef]
- Barkey, D.P. Structure and pattern formation in electrodeposition. In Advances in Electrochemical Science and Engineering; Alkire, R.C., Kolb, D.M., Eds.; Wiley: New York, NY, USA, 2001; Volume 7, pp. 151–191. [Google Scholar]
- Pazkossy, T. Electrochemistry at fractal surfaces. J. Electroanal. Chem. 1991, 300, 1–11. [Google Scholar] [CrossRef]
- Röder, H.; Hahn, E.; Brune, H.; Bucher, J.P.; Kern, K. Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature 1993, 366, 141–143. [Google Scholar] [CrossRef]
- Bhattacharjya, D.; Mukhopadhyay, I. Controlled Growth of Polyaniline Fractals on HOPG Through Potentiodynamic, Electropolymerization. Langmuir 2012, 28, 5893–5899. [Google Scholar] [CrossRef]
- Xue, Y.; Abdelhafed, T.; Pascal, J. Electrodeposition of cobalt films with an oriented fir tree-like morphology with adjustable wetting properties using a self-assembled gold nanoparticle modified HOPG electrode. J. Mater. Chem. A 2013, 1, 11580. [Google Scholar]
- Taleb, A.; Mangeney, C.; Ivanova, V. Electrochemical synthesis using a self-assembled Au nanoparticle template of dendritic films with unusual wetting properties. Nanotechnology 2011, 22, 205301. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ming, N. Concentration field oscillation in front of a dendrite tip in electrochemical deposition. Phys. Rev. A 1992, 45, 2493. [Google Scholar] [CrossRef] [PubMed]
- Fleury, V.; Chazalviel, J.N.; Rosso, M. Theory and experimental evidence of electroconvection around electrochemical deposits. Phys. Rev. Lett. 1992, 68, 2492. [Google Scholar] [CrossRef]
- King, S.; Rajoo, D.; Norori-McCormac, A.; Striolo, A. Characterization of Kinetics-Controlled Morphologies in the Growth of Silver Crystals from a Primary Lead Melt. Minerals 2024, 14, 56. [Google Scholar] [CrossRef]
- Van Huis, M.A.; Kunneman, L.T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandbergen, H.W.; Vanmaekelbergh, D. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 2008, 8, 3959. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, C.; Qin, D.; Xia, Y. Galvanic Replacement Synthesis of Metal Nanostructures: Bridging the Gap between Chemical and Electrochemical Approaches. Acc. Chem. Res. 2023, 56, 900–909. [Google Scholar] [CrossRef]
- Abdelhafed, T.; Xue, Y.; Munteanu, S.; Kanoufi, F.; Dubot, P. Self-assembled thiolate functionalized gold nanoparticles template toward tailoring the morphology of electrochemically deposited silver nanostructure. Electrochim. Acta 2013, 88, 621–631. [Google Scholar]
- Wu, F.; Wang, C.; Hu, H.-Y.; Pan, M.; Li, H.-F.; Xie, N.; Zeng, Z.; Deng, S.; Wu, M.H.; Vinodgopal, K.; et al. One-step synthesis of hierarchical metal oxide nanosheet/carbon nanotube composites by chemical vapor deposition. J. Mater. Sci. 2018, 54, 1291–1303. [Google Scholar] [CrossRef]
- Hang, T.; Xiao, S.; Yang, C.; Li, X.; Guo, C.; He, G.; Li, B.; Yang, C.; Chen, H.-j.; Liu, F.; et al. Hierarchical graphene/nanorods-based H2O2 electrochemical sensor with self-cleaning and anti-biofouling properties. Sens. Actuators B Chem. 2019, 289, 15–23. [Google Scholar] [CrossRef]
- Cao, T.; Trefalt, G.; Borkovec, M. Aggregation of colloidal particles in the presence of hydrophobic anions: Importance of attractive non-DLVO forces. Langmuir 2018, 34, 14368–14377. [Google Scholar] [CrossRef]
- He, Y.T.; Wan, J.; Tokunaga, T. Kinetic stability of hematic nanoparticles: The effect of particle size. J. Nanopart. Res. 2007, 10, 321–332. [Google Scholar] [CrossRef]
- Zhou, D.; Ji, Z.; Jiang, X.; Dunphy, D.R.; Brinker, J.; Keller, A. Influence of material properties on TiO2 nanoparticle agglomeration. PLoS ONE 2013, 8, 81239. [Google Scholar] [CrossRef]
- Derjaguin, B. A theory of interaction of particles in the presence of electric double-layers and the stability of lyophobic colloids and disperse systems. Prog. Surf. Sci. 1993, 43, 1–14. [Google Scholar] [CrossRef]
- Derjaguin, B.; Landau, L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim. 1941, 14, 633–662. [Google Scholar] [CrossRef]
- Verwey, E.J.W.; Overbeek, J.T.G. Theory of Stability of Lyophobic Colloids; Elsevier: Amsterdam, The Netherlands, 1948; Volume 4, pp. 413–414. [Google Scholar]
- Xing, R.; Sheng, K.; Xu, L.; Liu, W.; Song, J.; Song, H. Three-dimensional In2O3–CuO inverse opals: Synthesis and improved gas sensing properties towards acetone. RSC Adv. 2016, 6, 57389–57395. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, B.; Liu, W.; Zhou, X.; Liu, M.; Sun, X.; Lv, J.; Zhang, L.; Xu, W.; Bai, X.; et al. Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance. Sens. Actuators B Chem. 2020, 320, 128405. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Q.; Sun, Y.; Zhao, C.; Guo, Z.; Gong, W.; Hu, J.; Chen, Y. Highly sensitive and portable electrochemical detection system based on AuNPs@CuO NWs/Cu2O/CF hierarchical nanostructures for enzymeless glucose sensing. Sens. Actuators B Chem. 2021, 345, 130379. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y.; Yu, A.; Jin, D.; Jo, A.; Lee, Y.; Kim, M.H.; Lee, C. An Efficient Electrochemical Sensor Driven by Hierarchical Hetero-Nanostructures Consisting of RuO2 Nanorods on WO3 Nanofibers for Detecting Biologically Relevant Molecules. Sensors 2019, 19, 3295. [Google Scholar] [CrossRef]
- Tripathy, A.; Sen, P.; Su, B.; Briscoe, W.H. Natural and Bioinspired Nanostructured Bactericidal Surfaces. Adv. Colloid Interface Sci. 2017, 248, 85–104. [Google Scholar] [CrossRef]
- Motomura, T.; Tabaru, T. Magnetron Sputtering Cathode for Low Power Density Operation. AIP Adv. 2017, 7, 125225. [Google Scholar] [CrossRef]
- Motomura, T.; Tabaru, T.; Uehara, M.; Fujio, Y.; Okuyama, T. Low-Temperature Aln Film Deposition Using Magnetic Mirror-Type Magnetron Cathode for Low Gas Pressure Operation. J. Vac. Sci. Technol. B 2020, 38, 032205. [Google Scholar] [CrossRef]
- Bali, R.; Harris, A.T. Biogenic Synthesis of Au Nanoparticles Using Vascular Plants. Ind. Eng. Chem. Res. 2010, 49, 12762–12772. [Google Scholar] [CrossRef]
- Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine 2010, 6, 257–262. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Tsuji, T.; Nakajima, A.; Horikoshi, T. Accumulation of cadmium by green microalgae. Eur. J. Appl. Microbiol. Biotechnol. 1979, 8, 207–215. [Google Scholar] [CrossRef]
- Maciel, V.B.; Fontes, A.M.; Geris, R.; da Rocha, Z.N.; Ramalho, J.G.S.; da Silva, A.F.; da Silva, G.C.; Taleb, A.; Ammar, S.; Malta, M. Exploiting Micrometer-Scale Replication of Fungal Biotemplates for Multifunctional Uses in Electrochemistry and SERS Substrates. ACS Omega 2024, 9, 43385–43394. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Ranjbari, E.; Amiri-Aref, M.; Hajian, A.; Ardakani, Y.H.; Amidi, S. Modified fractal iron oxide magnetic nanostructure: A novel and high-performance platform for redox protein immobilization, direct electrochemistry and bioelectrocatalysis application. Biosens. Bioelectron. 2016, 85, 814–821. [Google Scholar] [CrossRef]
- Xu, L.P.; Wang, S.; Dong, H.; Liu, G.; Wen, Y.; Wang, S.; Zhang, X. Fractal gold modified electrode for ultrasensitive thrombin detection. Nanoscale 2012, 4, 3786–3790. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.P.; Wang, S.; Yang, W.; Wen, Y.; Zhang, X. An ultrasensitive electrochemical immunosensor for apolipoprotein E4 based on fractal nanostructures and enzyme amplification. Biosens. Bioelectron. 2015, 71, 396–400. [Google Scholar] [CrossRef]
- Wen, X.; Xie, Y.T.; Mak, M.W.; Cheung, K.Y.; Li, X.Y.; Renneberg, R.; Yang, S. Dendritic nanostructures of silver: Facile synthesis, structural characterizations, and sensing applications. Langmuir 2006, 22, 4836–4842. [Google Scholar] [CrossRef]
- Hu, J.; Sun, J.; Bian, C.; Tong, J.; Shanhong, X. 3D Dendritic Nanostructure of Silver-Array: Preparation, Growth Mechanism and Application in Nitrate Sensor. Electroanalysis 2013, 25, 546–556. [Google Scholar] [CrossRef]
- Chen, T.W.; Rajaji, U.; Chen, S.M.; Li, Y.L.; Ramalingam, R.J. Ultrasonic-assisted synthesis of alpha-MnS (alabandite) nanoparticles decorated reduced graphene oxide hybrids: Enhanced electrocatalyst for electrochemical detection of Parkinson’s disease biomarker. Ultrason. Sonochem. 2019, 56, 378–385. [Google Scholar] [CrossRef]
- Naik, S.S.; Lee, S.J.; Theerthagiri, J.; Yu, Y.; Choi, M.Y. Rapid and highly selective electrochemical sensor based on ZnS/Au-decorated f-multi-walled carbon nanotube nanocomposites produced via pulsed laser technique for detection of toxic nitro compounds. J. Hazard. Mater. 2021, 418, 126269. [Google Scholar] [CrossRef]
- Zhao, Z.; Kong, Y.; Huang, G.; Liu, C.; You, C.; Xiao, Z.; Zhu, H.; Tan, J.; Xu, B.; Cui, J.; et al. Area-selective and precise assembly of metal organic framework particles by atomic layer deposition induction and its application for ultra-sensitive dopamine sensor. Nano Today 2022, 42, 101347. [Google Scholar] [CrossRef]
- Gul, M.; Kashif, M.; Muhammad, S.; Azizi, S.; Sun, H. Various Methods of Synthesis and Applications of Gold-Based Nanomaterials: A Detailed Review. Cryst. Growth Des. 2025, 25, 2227–2266. [Google Scholar] [CrossRef]
- Bhakyalatha, M.; Sathish, S.; Sekhar, K.C.; Silva, J.P.B.; Kamakshi, K. ZnO nanostructures for biosensing applications: Recent advances, challenges, and future perspectives. Microchem. J. 2025, 213, 113893. [Google Scholar] [CrossRef]
- Singh, M.; Paudel, D.R.; Kim, H.; Kim, T.H.; Park, J.; Lee, S. Interface engineering strategies for enhanced electrocatalytic hydrogen evolution reaction. Energy Adv. 2025, 4, 716–742. [Google Scholar] [CrossRef]
- Bagal, I.V.; Ejaz, A.; Waseem, A.; Johar, M.A.; Khan, M.S.; Al-Mughanam, T.; Khan, M.A. Three-Dimensional Integration of CuO–Si Hierarchical Nanowires for Electrochemical Detection of N2H4. ACS Appl. Nano Mater. 2020, 3, 4825–4835. [Google Scholar] [CrossRef]
- Jia, H.; Shang, N.; Feng, Y.; Ye, H.; Zhao, J.; Wang, H.; Wang, C.; Zhang, Y. Facile preparation of Ni nanoparticle embedded on mesoporous carbon nanorods for non-enzymatic glucose detection. J. Colloid Interface Sci. 2021, 583, 310–320. [Google Scholar] [CrossRef]
- Hou, C.; Liu, H.; Zhang, D.; Yang, C.; Zhang, M. Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid. J. Alloys Compd. 2016, 666, 178–184. [Google Scholar] [CrossRef]
- Bach, L.G.; Thi, M.L.N.; Son, N.T.; Bui, Q.B.; Nhac-Vu, H.T.; Ai-Le, P.H. Mesoporous gold nanoparticles supported cobalt nanorods as a free-standing electrochemical sensor for sensitive hydrogen peroxide detection. J. Electroanal. Chem. 2019, 848, 113359. [Google Scholar] [CrossRef]
- Lei, J.; Liu, Y.; Wang, X.; Hu, P.; Peng, X. Au/CuO nanosheets composite for glucose sensor and CO oxidation. RSC Adv. 2015, 5, 9130–9137. [Google Scholar] [CrossRef]
- Felix, S.; Grace, A.N.; Jayavel, R. Sensitive electrochemical detection of glucose based on Au-CuO nanocomposites. J. Phys. Chem. Solids 2018, 122, 255–260. [Google Scholar] [CrossRef]
- Chakraborty, P.; Dhar, S.; Debnath, K.; Majumder, T.; Mondal, S.P. Non-enzymatic and non-invasive glucose detection using Au nanoparticle decorated CuO nanorods. Sens. Actuators B Chem. 2019, 283, 776–785. [Google Scholar] [CrossRef]
- Gasparotto, G.; Costa, J.P.C.; Costa, P.I.; Zaghete, M.A.; Mazon, T. Electrochemical immunosensor based on ZnO nanorods-Au nanoparticles nanohybrids for ovarian cancer antigen CA-125 detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chen, X.; Jiang, T.J.; Guo, Z.; Liu, J.H.; Huang, X.J. Electrochemical Detection of Trace Arsenic(III) by Nanocomposite of Nanorod-Like α-MnO2 Decorated with approximately 5 nm Au Nanoparticles: Considering the Change of Arsenic Speciation. Anal. Chem. 2016, 88, 9720–9728. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, B.; Fu, X.-Z.; Sun, R.; Wong, C.-P. CuO nanorods supported Pd nanoparticles as high-performance electrocatalysts for glucose detection. J. Electroanal. Chem. 2017, 807, 220–227. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahn, M.-S.; Hahn, Y.-B. A Highly Sensitive Nonenzymatic Sensor Based on Fe2O3 Nanoparticle Coated ZnO Nanorods for Electrochemical Detection of Nitrite. Adv. Mater. Interfaces 2017, 4, 1700691. [Google Scholar] [CrossRef]
- Kaur, H.; Shorie, M.; Sabherwal, P. Electrochemical aptasensor using boron-carbon nanorods decorated by nickel nanoparticles for detection of E. coli O157:H7. Mikrochim. Acta 2020, 187, 461. [Google Scholar] [CrossRef]
- Ben Messaoud, N.; Ghica, M.E.; Dridi, C.; Ben Ali, M.; Brett, C.M.A. Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens. Actuators B Chem. 2017, 253, 513–522. [Google Scholar] [CrossRef]
- Huang, J.; Xing, X.; Zhang, X.; He, X.; Lin, Q.; Lian, W.; Zhu, H. A molecularly imprinted electrochemical sensor based on multiwalled carbon nanotube-gold nanoparticle composites and chitosan for the detection of tyramine. Food Res. Int. 2011, 44, 276–281. [Google Scholar] [CrossRef]
- Bagheri, H.; Hajian, A.; Rezaei, M.; Shirzadmehr, A. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high-performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard. Mater. 2017, 324, 762–772. [Google Scholar] [CrossRef]
- Eteya, M.M.; Rounaghi, G.H.; Deiminiat, B. Fabrication of a new electrochemical sensor based on Au Pt bimetallic nanoparticles decorated multi-walled carbon nanotubes for the determination of diclofenac. Microchem. J. 2019, 144, 254–260. [Google Scholar] [CrossRef]
- Yuan, C.X.; Fan, Y.R.; Tao, Z.; Guo, H.X.; Zhang, J.X.; Wang, Y.L.; Shan, D.L.; Lu, X.Q. A new electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles supported by graphene-multiwalled carbon nanotube composite. Biosens. Bioelectron. 2014, 58, 85–91. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Zandi-Atashbar, N.; Rezaei, B.; Ghiaci, M.; Chermahini, M.E.; Moshiri, P. Non-enzymatic glucose electrochemical sensor based on silver nanoparticle decorated organic functionalized multiwall carbon nanotubes. RSC Adv. 2016, 6, 60926–60932. [Google Scholar] [CrossRef]
- Bhakta, A.K.; Mascarenhas, R.J.; D’Souza, O.J.; Satpati, A.K.; Detriche, S.; Mekhalif, Z.; Dalhalle, J. Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and L-tyrosine. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 57, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Madrakian, T.; Maleki, S.; Heidari, M.; Afkhami, A. An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, H.; Afkhami, A.; Madrakian, T.; Soltani-Felehgari, F. Construction of a novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 847–854. [Google Scholar] [CrossRef]
- Fotouhi, L.; Dorraji, P.S.; Keshmiri, Y.S.S.; Hamtak, M. Electrochemical Sensor Based on Nanocomposite of Multi-Walled Carbon Nanotubes/TiO2 Nanoparticles in Chitosan Matrix for Simultaneous and Separate Determination of Dihydroxybenzene Isomers. J. Electrochem. Soc. 2018, 165, B202–B211. [Google Scholar] [CrossRef]
- Arévalo, F.J.; Osuna-Sánchez, Y.; Sandoval-Cortés, J.; Di Tocco, A.; Granero, A.M.; Robledo, S.N.; Zon, M.A.; Vettorazzi, N.R.; Martínez, J.L.; Segura, E.P.; et al. Development of an electrochemical sensor for the determination of glycerol based on glassy carbon electrodes modified with a copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite. Sens. Actuators B Chem. 2017, 244, 949–957. [Google Scholar] [CrossRef]
- Tavana, T.; Rezvani, A.R.; Karimi-Maleh, H. Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: An excellent, powerful electrocatalyst for the fabrication of an electrochemical sensor to determine nalbuphine in the presence of tramadol as two opioid analgesic drugs. J. Pharm. Biomed. Anal. 2020, 189, 113397. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zheng, Y.F.; Zhou, B.; Song, X.C. An Innovative Electrochemical Sensor Ground on NiO Nanoparticles and Multi-Walled Carbon Nanotubes for Quantitative Determination of Nitrite. J. Nanosci. Nanotechnol. 2018, 18, 3585–3591. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, A.A.; Allafchian, A.R.; Rezaei, B.; Mohammadzadeh, R. Characterization of carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles as a novel electrochemical sensor: Application for highly selective determination of sotalol using voltammetry. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 202–208. [Google Scholar] [CrossRef]
- Chen, X.; Liu, W.; Tang, L.; Wang, J.; Pan, H.; Du, M. Electrochemical sensor for detection of hydrazine based on Au@Pd core-shell nanoparticles supported on amino-functionalized TiO2 nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 34, 304–310. [Google Scholar] [CrossRef]
- Cui, H.; Hong, C.; Ying, A.; Yang, X.; Ren, S. Ultrathin gold nanowire-functionalized carbon nanotubes for hybrid molecular sensing. ACS Nano 2013, 9, 7805–7811. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, J.; Niu, W.; Xue, J. Nanocomposites prepared from gold nanowires and multiwalled carbon nanotubes for non-enzymatic sensitive bioelectrochemical detection of pentraxin-3 in human serum. Ionics 2021, 27, 1795–1802. [Google Scholar] [CrossRef]
- Palve, Y.P.; Jha, N. A novel bilayer of copper nanowire and carbon nanotube electrode for highly sensitive enzyme-free glucose detection. Mater. Chem. Phys. 2020, 240, 122086. [Google Scholar]
- Kalambate, P.K.; Dhanjai; Huang, Z.; Li, Y.; Shen, Y.; Xie, M.; Huang, Y.; Srivastava, A.K. Core@shell nanomaterials based sensing devices: A review. TrAC Trends Anal. Chem. 2019, 115, 147–161. [Google Scholar] [CrossRef]
- Xu, L.; Yin, M.-L.; Liu, S. Agx@WO3 core-shell nanostructure for LSP enhanced chemical sensors. Sci. Rep. 2014, 4, 6745. [Google Scholar]
- Lee, Y.-W.; Lee, J.-Y.; Kwak, D.-H.; Hwang, E.-T.; Sohn, J.I.; Park, K.-W. Pd@Pt core–shell nanostructures for improved electrocatalytic activity in methanol oxidation reaction. Appl. Catal. B Environ. 2015, 179, 178–184. [Google Scholar]
- Lee, H.-J.; Hanyu, D.; Dao, A.T.N.; Kaneko, K. Insights into the formation of Au@Pt dendritic core–shell nanoparticles with the aid of ultrasonication. Sci. Rep. 2025, 15, 29474. [Google Scholar]
- Mazloum-Ardakani, M.; Hosseinzadeh, L.; Taleat, Z. Synthesis and electrocatalytic effect of Ag@Pt core–shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Biosens. Bioelectron. 2015, 74, 30–36. [Google Scholar] [CrossRef]
- Sirgedaite, G.; Talaikis, M.; Drabavicius, A.; Niaura, G.; Mikoliunaite, L. Synthesis and characterization of Au@Ag nanoparticles for multiwavelength SERS biosensing. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 338, 126160. [Google Scholar]
- Khoshroo, A.; Hosseinzadeh, L.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ehrlich, H. Development of an electrochemical sensor for sensitive determination of oxazepam based on silver-platinum core–shell nanoparticles supported on graphene. J. Electroanal. Chem. 2018, 823, 61–66. [Google Scholar] [CrossRef]
- Mei, H.; Wu, W.; Yu, B.; Wu, H.; Wang, S.; Xia, Q. Nonenzymatic electrochemical sensor based on Fe@Pt core–shell nanoparticles for hydrogen peroxide, glucose, and formaldehyde. Sens. Actuators B Chem. 2016, 223, 68–75. [Google Scholar] [CrossRef]
- Chen, T.; Xu, J.; Arsalan, M.; Sheng, Q.; Zheng, J.; Cao, W.; Yue, T. Controlled synthesis of Au@Pd core-shell nanocomposites and their application for electrochemical sensing of hydroquinone. Talanta 2019, 198, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Guo, Z.; Su, F.; Gao, L.; Pang, X.; Cao, W.; Du, B.; Wei, Q. Ultrasensitive electrochemical immunoassay for CEA through host-guest interaction of beta-cyclodextrin functionalized graphene and Cu@Ag core-shell nanoparticles with adamantine-modified antibody. Biosens. Bioelectron. 2015, 63, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Guo, H.; Wang, Z.; Long, Y.; Li, W.; Tu, Y. Au@Cu2O core-shell structure for high sensitive non-enzymatic glucose sensor. Sens. Actuators B Chem. 2018, 255, 2510–2519. [Google Scholar] [CrossRef]
- Kumar, D.R.; Manoj, D.; Santhanalakshmi, J.; Shim, J.-J. Au-CuO core-shell nanoparticles design and development for the selective determination of Vitamin B6. Electrochim. Acta 2015, 176, 514–522. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Q.; Jiang, Z.; Yang, X.; Wei, M.; Zhang, M. Nonenzymatic glucose sensor based on icosahedron AuPd@CuO core shell nanoparticles and MWCNT. Sens. Actuators B Chem. 2017, 251, 1096–1103. [Google Scholar] [CrossRef]
- Yu, D.; Zeng, Y.; Qi, Y.; Zhou, T.; Shi, G. A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite. Biosens. Bioelectron. 2012, 38, 270–277. [Google Scholar] [CrossRef]
- Zhu, H.; Sigdel, A.; Zhang, S.; Su, D.; Xi, Z.; Li, Q.; Sun, S. Core/shell Au/MnO nanoparticles prepared through controlled oxidation of AuMn as an electrocatalyst for sensitive H2O2 detection. Angew. Chem. Int. Ed. Engl. 2014, 53, 12508–12512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zheng, J.; Tan, C.; Lin, X.; Hu, S.; Chen, J.; You, X.; Li, S. Designed self-assembled hybrid Au@CdS core-shell nanoparticles with negative charge and their application as highly selective biosensors. J. Mater. Chem. B 2015, 3, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Huo, H.; Han, X.; Xu, C.; Li, H. Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing. Anal. Chem. 2014, 86, 876–883. [Google Scholar] [CrossRef]
- Zhang, C.; Qian, L.; Zhang, K.; Yuan, S.; Xiao, J.; Wang, S. Hierarchical porous Ni/NiO core–shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors. J. Mater. Chem. A 2015, 3, 10519–10525. [Google Scholar] [CrossRef]
- Chen, T.; Li, X.; Qiu, C.; Zhu, W.; Ma, H.; Chen, S.; Meng, O. Electrochemical sensing of glucose by carbon cloth-supported Co3O4/PbO2 core-shell nanorod arrays. Biosens. Bioelectron. 2014, 53, 200–206. [Google Scholar] [CrossRef]
- Kannan, P.; Chen, F.; Jiang, H.; Wang, H.; Wang, R.; Subramanian, P.; Ji, S. Hierarchical core-shell structured Ni3S2/NiMoO4 nanowires: A high-performance and reusable electrochemical sensor for glucose detection. Analyst 2019, 144, 4925–4934. [Google Scholar] [CrossRef]
- Dayakar, T.; Rao, K.V.; Bikshalu, K.; Malapati, V.; Sadasivuni, K.K. Non-enzymatic sensing of glucose using screen-printed electrode modified with novel synthesized CeO2@CuO core shell nanostructure. Biosens. Bioelectron. 2018, 111, 166–173. [Google Scholar]
- Arvand, M.; Hassannezhad, M. Magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for am23plified electrochemical sensing of uric acid. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 36, 160–167. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.; Chen, Z.; Song, Z.; Luo, X. Electrochemical determination of paracetamol based on Au@graphene core-shell nanoparticles doped conducting polymer PEDOT nanocomposite. Sens. Actuators B Chem. 2018, 260, 778–785. [Google Scholar] [CrossRef]
- Cui, Z.; Yin, H.; Nie, Q. Controllable preparation of hierarchically core-shell structure NiO/C microspheres for non-enzymatic glucose sensor. J. Alloys Compd. 2015, 632, 402–407. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, J.; Huang, H.; Xie, S.; Xu, J.; Yue, R. Fabrication of hierarchical Ru/PEDOT:PSS/Ti3C2Tx nanocomposites as electrochemical sensing platforms for highly sensitive Sudan I detection in food. Food Chem. 2022, 372, 131212. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, L.; Chen, F.; Lu, X.; Li, X.; Bao, Y.; Wang, W.; Han, D.; Niu, L. Coral-like Ti3C2Tx/PANI Binary Nanocomposite Wearable Enzyme Electrochemical Biosensor for Continuous Monitoring of Human Sweat Glucose. Chemosensors 2024, 12, 222. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, S.; Yu, H.; Feng, S.; Zhang, K. Ga@MXene-based flexible wearable biosensor for glucose monitoring in sweat. iScience 2025, 28, 111737. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, H.; Fu, Y.; Xia, P.; Chen, C.; Wei, Y.; Qu, S.; Feng, S. Construction of electrochemical immunosensor from MXene/multi-walled carbon nanotubes/gold nanoparticles for specific detection of carcinoembryonic antigen. Microchim. Acta 2024, 191, 626. [Google Scholar] [CrossRef]
- Feng, H.; Huang, Z.; Lou, X.; Li, J.; Hui, G. Study of a sucrose sensor by functional Cu foam material and its applications in commercial beverages. Food Anal. Methods 2017, 10, 407–418. [Google Scholar] [CrossRef]
- Tao, B.; Feng, X.; Miao, F. Nickel foam supported CuO/Co3O4/r-GO is used as electrode material for non-enzymatic glucose sensors and high-performance supercapacitors. J. Energy Storage 2024, 104, 114603. [Google Scholar] [CrossRef]
- Xu, H.; Chang, L.; Wang, X.; Shao, Y.; Zhao, W.; Yang, X.; Xue, Z.; Zhang, T.; Yao, K. Self-oxidized AgCu nano-foam with unique phase structure for ethanol sensors breaking through the trade-off between sensitivity and upper linear limit. Electrochim. Acta 2024, 503, 144889. [Google Scholar]

















| Analytes | Materials | LODs | Linear Range | Ref. |
|---|---|---|---|---|
| H2O2 | Fractal iron oxide | 0.48 µM | 2 to 320 µM | [61] |
| Thrombin | Fractal Au | 5.7 × M | to M | [62] |
| APOE4 | Fractal Au | 0.3 ng/mL | 1 ng/mL to 10,000 ng/mL | [63] |
| Nitrate | dendritic Ag | 2 uM | 0.002–1 mM | [65] |
| Analytes | Materials | LODs | Sensitivity | Linear Range | Ref. | |
|---|---|---|---|---|---|---|
| Biological molecules | Glucose | Ni NPs-carbon NRs | 0.07 µM | 210.56 µA | 0.5336–3.03 mM | [73] |
| AA | ZnO NRs-Au NPs | 4.699 µM | - | 0.1–4 mM | [74] | |
| UA | ZnO NRs-Au NPs | 2.375 µM | - | 0.01–0.4 mM | [74] | |
| H2O2 | Au/Co NRs-3D nickel foam | 1.42 µM | - | 0.002–0.799 mM | [75] | |
| glucose | Au NPs-CuO NSs | 7.4 µM | 628.34 µA | - | [76] | |
| glucose | Au NPs-CuO NRs | 1.4 µM | 3126.76 µA | 5 µM to 650 µM | [77] | |
| glucose | Au NPs- CuO NRs | 0.17 µM | 1740 µA | 5 µM to 1.325 mM | [78] | |
| Glucose | Pd NPs-CuO NRs | <1 µM | 2536.9 µA | - | [81] | |
| Tyramine | Au NPs- MWCNT | 5.7 × mol/L | - | 1.08 × to 1 × mol/L | [85] | |
| Glucose | Ag NPs-F-MWCNTs | 0.03 μM | 1057.3 µA | 1.3 to 1000 mM | [89] | |
| Uric acid | Fe NPs-MWCNTs | 4.80 ± 0.35 × 10−8 M | - | 7.0 × 10−8 to 1.0 × 10−6 M | [90] | |
| Glycerol | CuO NPs- MWCNTs | 5.8 × 10−6 g dm−3 | - | 9 × 10−6 to 1 × 10−3 g dm−3 | [94] | |
| Glucose | Fe@Pt NPs | 750 nM | 11.75 µA | 1–16 mM | [109] | |
| Glucose | Au@Cu2O NPs | 18 µM | 715 µA | 0.05–2 mM | [112] | |
| Vitamin B6 | Au@CuO NPs | 0.15 µM | - | 0.79 µM–18.4 µM | [113] | |
| Glucose | AuPd@CuO NPs | 0.10 µM | 744.98 µA | 3.00 × 10−5 to 9.31 × 10−3 M | [114] | |
| Dopamine | Au@SiO2 NPs | 2 × 10−8 M | - | 4.8 × 10−8–5.0 × 10−5 M | [115] | |
| H2O2 | Au@MnO NPs | 8 nM | - | - | [116] | |
| Uric acid | Au@CdS | 0.55 nmol L−1 | - | 0.002–800 mmol L−1 | [117] | |
| Glucose | Ti@TiO2 NWs | 0.35 µM | 1136.67 µA | 0.005–12 mM | [118] | |
| Glucose | porous Ni@NiO | 10 μM | 4.49 mA | - | [119] | |
| Glucose | Co3O4@PbO2 NRs | 0.31 µM | 460.3 µA | 0.005–1.2 mM | [120] | |
| Glucose | Ni3S2@NiMoO4 NWs | 0.055 µM | 10.49 µA | 0.001–4 mM | [121] | |
| Glucose | CeO2@CuO | 0.019 µM | 3319.83 µA | 1 to 8.9 μM | [122] | |
| Uric acid | Fe3O4@SiO2-MWCNT | 0.13 µM | 0.03 | 0.6–100 µM | [123] | |
| Glucose | NiO@C | 2 µM | 30.19 mA | 2 μM–1.279 mM | [125] | |
| Hazardous Pollutants | Trace Arsenic(III) | Au NPs-α-MnO2 NRs | 0.019 ppb | 16.268 μA | 1 μm–10 mM | [80] |
| Nitrite | Fe2O3 NPs-ZnO NRs | 0.015 µM | 131.2 µA | 1 µM to 1250 µM | [82] | |
| Bisphenol A | Au NPs-MWCNT | 4.3 nM | 1.76/0.62 µA | 0.01 µM to 0.7 µM | [84] | |
| Nitrite+Nitrate | Cu NPs-CNTs | 30 nM and 20 nM | - | 0.1 to 75 µM | [86] | |
| Nitro aromatic | Pt/Pd NPs-CNTs | 1 ppb | - | 3.5 to 190 ppb | [88] | |
| Benzoate | Fe3O4 NPs-MWCNTs | 0.09 μmol L−1 | - | 0.5–100.0 μmol L−1 | [91] | |
| Nitrite | NiO NPs-MWCNTs | 0.25 M | 3.53 µA | 10−6 M to 10−4 M | [96] | |
| N2H4 | Au/Pd NPs-TiO2 NTs | 1.2 × 10−8 M | - | 0.06 to 700 μM | [98] | |
| Hydroquinone | Au@Pd NPs | 0.63 μM | 1.127 mA | 4–5000 µM | [110] | |
| Disease biomarkers and pathogens | CA-125 | Au NPs-ZnO NRs | 2.5 ng/μL | - | - | [79] |
| E. coli | Ni NPs-BC NRs | 10 cfu | - | to cfu | [83] | |
| CEA | Cu@Ag NPs | 20 fg/mL | - | 0.0001–20 ng/mL | [111] | |
| Pharmaceutical drugs | Diclofenac | Au Pt NPs-CNTs | 0.3 µM | - | 0.5 to 1000 μM | [87] |
| Citalopram | ZnO NPs-MWCNTs | 0.005 μmol L−1 | - | 0.012 to 1.54 μmol L−1 | [92] | |
| Dihydroxy-benzène | TiO2 NPs-MWCNTs | 0.06 μmol dm−3 | - | 0.4–276.0 μmol dm−3 | [93] | |
| Sotalol | NiFe2O4 NPs-MWCNTs | 0.09 μmol L−1 | - | 0.5–1000 μmol L−1 | [97] | |
| Oxazepam | Ag@Pt NPs-GRs | 42 ± 1 nM | 0.357 µA | 0.05–150.0 μM | [108] | |
| Paracetamol | Au@graphene | 0.041 µM | - | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dassallem, S.; Nouneh, K.; Xue, Y.; Tonelli, D.; Taleb, A. A Review on Hierarchical Nanostructures for Electrochemical Sensors. Sensors 2026, 26, 73. https://doi.org/10.3390/s26010073
Dassallem S, Nouneh K, Xue Y, Tonelli D, Taleb A. A Review on Hierarchical Nanostructures for Electrochemical Sensors. Sensors. 2026; 26(1):73. https://doi.org/10.3390/s26010073
Chicago/Turabian StyleDassallem, Safia, Khalid Nouneh, Yanpeng Xue, Domenica Tonelli, and Abdelhafed Taleb. 2026. "A Review on Hierarchical Nanostructures for Electrochemical Sensors" Sensors 26, no. 1: 73. https://doi.org/10.3390/s26010073
APA StyleDassallem, S., Nouneh, K., Xue, Y., Tonelli, D., & Taleb, A. (2026). A Review on Hierarchical Nanostructures for Electrochemical Sensors. Sensors, 26(1), 73. https://doi.org/10.3390/s26010073

