Detection and Monitoring of Topography Changes at the Tottori Sand Dune Using UAV-LiDAR
Highlights
- An integrated UAV-LiDAR sensor system with GNSS-RT and optimized ground control point (GCP) design enables centimeter-level digital elevation models (DEMs) from LiDAR point clouds, which are validated against GNSS reference data.
- Subtle dune dynamics, including elevation changes of up to 0.4 m associated with wind-driven sand transport, were detected.
- This study demonstrates UAV-LiDAR as a robust environmental sensing framework for coastal dune conservation and hazard assessment.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV-LiDAR System Setup
2.3. Ground Control Points (GCPs) and GNSS Survey
2.4. Data Acquisition
2.5. Point Cloud Processing
2.6. DEM Differencing and Change Detection
3. Results
3.1. Vertical Calibration and Alignment Assessment
3.2. Sand Deposition and Erosion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DEM | Digital Elevation Model |
| GCP | Ground Control Point |
| GNSS | Global Navigation Satellite System |
| LiDAR | Light Detection and Ranging |
| RTK | Real-Time Kinematic |
| UAV | Unmanned Aerial Vehicle |
References
- Williams, A.T.; Alveirinho-Dias, J.; Novo, F.G.; Garcıa-Mora, M.R.; Curr, R.; Pereira, A. Integrated coastal dune management: Checklists. Cont. Shelf Res. 2001, 21, 1937–1960. [Google Scholar] [CrossRef]
- Bishop, M.A. Seasonal variation of crescentic dune morphology and morphometry, Strzelecki– Simpson Desert, Australia. Earth Surf. Process. Landf. 2001, 26, 783–791. [Google Scholar] [CrossRef]
- Andrews, B.; Gares, P.A.; Colby, J.D. Techniques for GIS modeling of coastal dunes. Geomorphology 2002, 48, 289–308. [Google Scholar] [CrossRef]
- Cirillo, D.; Tangari, A.C.; Scarciglia, F.; Lavecchia, G.; Brozzetti, F. UAV-PPK Photogrammetry, GIS, and Soil Analysis to Estimate Long-Term Slip Rates on Active Faults in a Seismic Gap of Northern Calabria (Southern Italy). Remote Sens. 2025, 17, 3366. [Google Scholar] [CrossRef]
- Sun, J.; Yuan, G.; Song, L.; Zhang, H. Unmanned aerial vehicles (UAVs) in landslide investigation and monitoring: A review. Drones 2024, 8, 30. [Google Scholar] [CrossRef]
- Liu, J.; Kimura, R.; Wu, J.; Kawai, T. Use of UAV Photogrammetry for Monitoring Topographic Changes in the Tottori Sand Dunes, Japan. Sand Dune Res. 2002, 69, 1–9. [Google Scholar] [CrossRef]
- Liu, J.; Wu, J.; Kimura, R. Evaluating the sand-trapping efficiency of sand fences using a combination of wind-blown sand measurements and UAV photogrammetry at tottori sand dunes, Japan. Remote Sens. 2023, 15, 1098. [Google Scholar] [CrossRef]
- Saito, T.; Kawai, T.; Takahara, Y.; Nagamatsu, D.; Inosako, K. Sand movement analysis of the Tottori Sand Dunes using aerial photogrammetry by UAVs. J. Arid. Land Stud. 2024, 34, 87–91. [Google Scholar] [CrossRef]
- Kovanič, Ľ.; Topitzer, B.; Peťovský, P.; Blišťan, P.; Gergeľová, M.B.; Blišťanová, M. Review of photogrammetric and lidar applications of UAV. Appl. Sci. 2023, 13, 6732. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Cheng, Y.-T.; Zhou, T.; Ravi, R.; Hasheminasab, S.M.; Flatt, J.E.; Troy, C.; Habib, A. Evaluation of UAV LiDAR for Mapping Coastal Environments. Remote Sens. 2019, 11, 2893. [Google Scholar] [CrossRef]
- Le Mauff, B.; Juigner, M.; Ba, A.; Robin, M.; Launeau, P.; Fattal, P. Coastal monitoring solutions of the geomorphological response of beach-dune systems using multi-temporal LiDAR datasets (Vendée coast, France). Geomorphology 2018, 304, 121–140. [Google Scholar] [CrossRef]
- Casella, E.; Drechsel, J.; Winter, C.; Benninghoff, M.; Rovere, A. Accuracy of sand beach topography surveying by drones and photogrammetry. Geo-Mar. Lett. 2020, 40, 255–268. [Google Scholar] [CrossRef]
- Romero, K.F.; Castillo, Y.; Quesada, M.; Zumbado, Y.; Jiménez, J.C. Development of a Testing Method for the Accuracy and Precision of GNSS and LiDAR Technology. AgriEngineering 2025, 7, 310. [Google Scholar] [CrossRef]
- Pinton, D.; Canestrelli, A.; Moon, R.; Wilkinson, B. Estimating Ground Elevation in Coastal Dunes from High-Resolution UAV-LIDAR Point Clouds and Photogrammetry. Remote Sens. 2023, 15, 226. [Google Scholar] [CrossRef]
- Frati, G.; Launeau, P.; Robin, M.; Giraud, M.; Juigner, M.; Debaine, F.; Michon, C. Coastal Sand Dunes Monitoring by Low Vegetation Cover Classification and Digital Elevation Model Improvement Using Synchronized Hyperspectral and Full-Waveform LiDAR Remote Sensing. Remote Sens. 2021, 13, 29. [Google Scholar] [CrossRef]
- Ma, D.; Tian, Z.; Zhu, C.; Wang, Y. A comprehensive approach to evaluate coastal dune evolution in Haiyang, China. Front. Mar. Sci. 2024, 11, 1326317. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Feng, S.; Peng, B.; Huang, L.; Fatholahi, S.N.; Tang, L.; Li, J. An overview of shoreline mapping by using airborne LiDAR. Remote Sens. 2023, 15, 253. [Google Scholar] [CrossRef]
- Śledziowski, J.; Giza, A.; Terefenko, P. S-LiNE: An open-source LiDAR toolbox for dune coasts shoreline mapping. SoftwareX 2025, 31, 102261. [Google Scholar] [CrossRef]
- Höfle, B.; Rutzinger, M. Topographic airborne LiDAR in geomorphology: A technological perspective. Z. Fur Geomorphol.-Suppl. 2011, 55, 1. [Google Scholar] [CrossRef]
- Elsner, P.; Dornbusch, U.; Thomas, I.; Amos, D.; Bovington, J.; Horn, D. Coincident beach surveys using UAS, vehicle mounted and airborne laser scanner: Point cloud inter-comparison and effects of surface type heterogeneity on elevation accuracies. Remote Sens. Environ. 2018, 208, 15–26. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Línková, L. A New Method for UAV Lidar Precision Testing Used for the Evaluation of an Affordable DJI ZENMUSE L1 Scanner. Remote Sens. 2021, 13, 4811. [Google Scholar] [CrossRef]
- Kersten, T.; Wolf, J.; Lindstaedt, M. Investigations intothe Accuracy of the UAV System DJI Matrice 300 RTK with the Sensors Zenmuse P1 and L1 in the Hamburg Test Field. In Proceedings of the XXIV ISPRS Congress on Imaging Today, Foreseeing Tomorrow, Commission I, Nice, France, 6–11 June 2022; International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XLIII-B1, pp. 339–346. [Google Scholar]
- Diara, F.; Roggero, M. Quality Assessment of DJI Zenmuse L1 and P1 LiDAR and Photogrammetric Systems: Metric and Statistics Analysis with the Integration of Trimble SX10 Data. Geomatics 2022, 2, 254–281. [Google Scholar] [CrossRef]
- Huang, Z.C.; Yeh, C.Y.; Tseng, K.H.; Hsu, W.Y. A UAV-RTK lidar system for wave and tide measurements in coastal zones. J. Atmos. Ocean. Technol. 2018, 35, 1557–1570. [Google Scholar] [CrossRef]
- Gašparović, M.; Seletković, A.; Berta, A.; Balenović, I. The Evaluation of Photogrammetry-Based DSM from LowCost UAV by LiDAR-Based DSM. South-East Eur. For. 2017, 8, 117–125. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Sánchez-Fernández, M.; de Sanjosé-Blasco, J.J.; Gudino-Elizondo, N.; Lavado-Contador, F. Is it possible to generate accurate 3D point clouds with UAS-LIDAR and UAS-RGB photogrammetry without GCPs? A case study on a beach and rocky cliff. Landsc. Ecol. 2024, 39, 191. [Google Scholar] [CrossRef]
- Takayama, N.; Kimura, R.; Liu, J.Q.; Moriyama, M. Long-term spatial distribution of vegetation and sand movement following the commencement of landscape conservation activities to curb grassland encroachment at the Tottori Sand Dunes natural monument (Vegetation and sand movement in the Tottori Sand Dunes). Int. J. Remote Sens. 2020, 41, 3070–3094. [Google Scholar] [CrossRef]
- Park, J.W.; Yeom, D.J. Method for establishing ground control points to realize UAV-based precision digital maps of earthwork sites. J. Asian Archit. Build. Eng. 2020, 21, 110–119. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Zhong, H.; Duan, Y.; Tao, P.; Zhang, Z. Influence of ground control point reliability and distribution on UAV photogrammetric 3D mapping accuracy. Geo-Spat. Inf. Sci. 2025, 28, 1998–2018. [Google Scholar] [CrossRef]
- Glennie, C.L.; Carter, W.E.; Shrestha, R.L.; Dietrich, W.E. Geodetic imaging with airborne LiDAR: The Earth’s surface revealed. Rep. Prog. Phys. 2013, 76, 086801. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Salach, A.; Bakuła, K.; Pilarska, M.; Ostrowski, W.; Górski, K.; Kurczyński, Z. Accuracy assessment of point clouds from LiDAR and dense image matching acquired using the UAV platform for DTM creation. ISPRS Int. J. Geo-Inf. 2018, 7, 342. [Google Scholar] [CrossRef]
- Zhang, K.; Whitman, D.; Leatherman, S.; Robertson, W. Quantification of beach changes caused by Hurricane Floyd along Florida’s Atlantic coast using airborne laser surveys. J. Coast. Res. 2005, 21, 123–134. [Google Scholar] [CrossRef]
- Young, A.P.; Ashford, S.A. Application of airborne LIDAR for seacliff volumetric change and beach-sediment budget contributions. J. Coast. Res. 2006, 22, 307–318. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Lichti, D.D.; Gordon, S.J.; Tipdecho, T. Error models and propagation in directly georeferenced terrestrial laser scanner networks. J. Surv. Eng. 2005, 131, 135–142. [Google Scholar] [CrossRef]
- Hu, T.; Sun, X.; Su, Y.; Guan, H.; Sun, Q.; Kelly, M.; Guo, Q. Development and performance evaluation of a very low-cost UAV-LiDAR system for forestry applications. Remote Sens. 2020, 13, 77. [Google Scholar] [CrossRef]








| Component | Model/Description | Key Specifications |
|---|---|---|
| UAV platform | DJI Matrice 300 RTK | Maximum flight time: ~55 min; Flight speed: 8 m·s−1; Flight altitude: 100 m; Front/side overlap: 70% |
| LiDAR sensor | DJI Zenmuse L1 | LiDAR type: Livox Mid-40; Wavelength: 905 nm; Field of view: 70.4° (circular); Max range: 450 m (reflectivity dependent); Point rate: up to 240,000 pts·s−1; Integrated 1-inch CMOS RGB camera (20 MP) for true-color point clouds |
| GNSS system | TOPCON HiPer SR (GNSS-RTK) | Positioning accuracy: Horizontal ±0.01 m; Vertical ±0.02 m; Dual-frequency RTK |
| Ground control points (GCPs) | Custom-designed targets | Size: 1.0 m × 1.0 m; Material: High-reflective white foil board with black matte cross pattern; Mounted on tripods at 1 m height above ground; Precisely surveyed by GNSS-RTK |
| Date | n (GCPs) | Mean Bias (m) | Std (m) | RMSE (m) |
|---|---|---|---|---|
| 12–13 October 2022 | 4 | +0.027 | 0.019 | 0.031 |
| 9 December 2022 | 4 | +0.011 | 0.007 | 0.012 |
| 11 January 2023 | 4 | −0.017 | 0.017 | 0.023 |
| 27 February 2022 * | 3 | −0.027 | 0.043 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, J.; Wu, J.; Okida, S.; Kimura, R.; Du, M.; Li, Y. Detection and Monitoring of Topography Changes at the Tottori Sand Dune Using UAV-LiDAR. Sensors 2026, 26, 302. https://doi.org/10.3390/s26010302
Liu J, Wu J, Okida S, Kimura R, Du M, Li Y. Detection and Monitoring of Topography Changes at the Tottori Sand Dune Using UAV-LiDAR. Sensors. 2026; 26(1):302. https://doi.org/10.3390/s26010302
Chicago/Turabian StyleLiu, Jiaqi, Jing Wu, Soichiro Okida, Reiji Kimura, Mingyuan Du, and Yan Li. 2026. "Detection and Monitoring of Topography Changes at the Tottori Sand Dune Using UAV-LiDAR" Sensors 26, no. 1: 302. https://doi.org/10.3390/s26010302
APA StyleLiu, J., Wu, J., Okida, S., Kimura, R., Du, M., & Li, Y. (2026). Detection and Monitoring of Topography Changes at the Tottori Sand Dune Using UAV-LiDAR. Sensors, 26(1), 302. https://doi.org/10.3390/s26010302

