Measuring Lower-Limb Kinematics in Walking: Wearable Sensors Achieve Comparable Reliability to Motion Capture Systems and Smartphone Cameras
Abstract
:1. Introduction
2. Methodology
2.1. Experiment Setup
2.2. Data Processing
2.3. Data Analysis
3. Results
3.1. Accuracy Comparison
3.2. Inter-Operator Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yahya, M.; Shah, J.A.; Kadir, K.A.; Yusof, Z.M.; Khan, S.; Warsi, A. Motion capture sensing techniques used in human upper limb motion: A review. Sens. Rev. 2019, 39, 504–511. [Google Scholar] [CrossRef]
- Caicedo, P.E.; Rengifo, C.F.; Rodriguez, L.E.; Sierra, W.A.; Gómez, M.C. Dataset for gait analysis and assessment of fall risk for older adults. Data Brief 2020, 33, 106550. [Google Scholar] [CrossRef]
- Ito, T.; Ota, Y. Comparison of gait analysis between a triaxial accelerometer–based device and an optical motion capture system. Preprints 2020. [Google Scholar]
- Forsyth, L.; Ligeti, A.; Blyth, M.; Clarke, J.; Riches, P. Validity of wearable sensors for total knee arthroplasty (TKA) rehabilitation: A study in younger and older healthy participants. Knee 2024, 51, 292–302. [Google Scholar] [CrossRef]
- Widhalm, K.; Durstberger, S.; Greisberger, A.; Wolf, B.; Putz, P. Validity of assessing level walking with the 2D motion analysis software TEMPLO and reliability of 3D marker application. Sci. Rep. 2024, 14, 1427. [Google Scholar] [CrossRef] [PubMed]
- Asaeda, M.; Kuwahara, W.; Fujita, N.; Yamasaki, T.; Adachi, N. Validity of motion analysis using the Kinect system to evaluate single leg stance in patients with hip disorders. Gait Posture 2018, 62, 458–462. [Google Scholar] [CrossRef]
- Mirek, E.; Rudzińska, M.; Szczudlik, A. The assessment of gait disorders in patients with Parkinson’s disease using the three-dimensional motion analysis system Vicon. Neurol. Neurochir. Pol. 2007, 41, 128–133. [Google Scholar]
- Ida, R.; Kuroyanagi, G.; Ueki, Y.; Murakami, S.; Shiraki, T.; Shimotori, D.; Okamoto, H.; Yamada, K. Total knee arthroplasty improves energy conversion efficiency during walking in patients with knee osteoarthritis. Knee 2025, 53, 42–48. [Google Scholar] [CrossRef]
- Ding, Z.; Güdel, M.; Smith, S.H.L.; Ademefun, R.A.; Bull, A.M.J. A Femoral Clamp to Reduce Soft Tissue Artifact: Accuracy and Reliability in Measuring Three-Dimensional Knee Kinematics During Gait. J. Biomech. Eng. 2020, 142, 044501. [Google Scholar] [CrossRef]
- Zhou, Y.M.; Raman, N.; Proietti, T.; Arnold, J.; Pathak, P.; Pont-Esteban, D.; Nuckols, K.; Rishe, K.; Doshi-Velez, F.; Lin, D.; et al. Estimating Upper Limb Fugl–Meyer Assessment Scores from Reaching Motions Using Wearable Sensors. IEEE J. Biomed. Health Inform. 2025; early access. [Google Scholar]
- Cocco, E.S.; Pournajaf, S.; Romano, P.; Morone, G.; Thouant, C.L.; Buscarini, L.; Manzia, C.M.; Cioeta, M.; Felzani, G.; Infarinato, F.; et al. Comparative analysis of upper body kinematics in stroke, Parkinson’s disease, and healthy subjects: An observational study using IMU–based targeted box and block test. Gait Posture 2024, 114, 69–77. [Google Scholar] [CrossRef]
- Woodman, O.J. An Introduction to Inertial Navigation; Tech. Rep. UCAM-CL-TR-696; University of Cambridge, Computer La-boratory: Cambridge, UK, 2007. [Google Scholar]
- Das, S.S. Simple, inexpensive, accurate calibration of 9 axis Inertial Motion Unit. In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–6. [Google Scholar]
- Zhang, Z. Microsoft Kinect Sensor and Its Effect. IEEE Multimed. 2012, 19, 4–10. [Google Scholar] [CrossRef]
- Hadjakos, A. Pianist motion capture with the Kinect depth camera. In Proceedings of the Sound and Music Computing Conference 2012, Copenhagen, Denmark, 11–14 July 2012; pp. 303–310. [Google Scholar]
- Bohannon, R.W.; Harrison, S.; Kinsella-Shaw, J. Reliability and validity of pendulum test measures of spasticity obtained with the Polhemus tracking system from patients with chronic stroke. J. Neuroeng. Rehabil. 2009, 6, 30. [Google Scholar] [CrossRef]
- Park, Y.; Lee, J.; Bae, J. Development of a Wearable Sensing Glove for Measuring the Motion of Fingers Using Linear Potentiometers and Flexible Wires. IEEE Trans. Ind. Inform. 2014, 11, 198–206. [Google Scholar] [CrossRef]
- Bentley, M. Wireless and Visual Hybrid Motion Capture System. U.S. Patent 9,320,957, 26 April 2016. [Google Scholar]
- Uhlrich, S.D.; Falisse, A.; Kidziński, Ł.; Muccini, J.; Ko, M.; Chaudhari, A.S.; Hicks, J.L.; Delp, S.L. OpenCap: Human movement dynamics from smartphone videos. PLoS Comput. Biol. 2023, 19, e1011462. [Google Scholar] [CrossRef] [PubMed]
- Svetek, A.; Morgan, K.; Burland, J.; Glaviano, N.R. Validation of OpenCap on lower extremity kinematics during functional tasks. J. Biomech. 2025, 183, 112602. [Google Scholar] [CrossRef]
- Wang, J.; Xu, W.; Wu, Z.; Zhang, H.; Wang, B.; Zhou, Z.; Wang, C.; Li, K.; Nie, Y. Evaluation of a smartphone-based markerless system to measure lower-limb kinematics in patients with knee osteoarthritis. J. Biomech. 2025, 181, 112529. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.-S.; Jung, T.-D.; Lee, Y.-S.; Kwon, Y.; Kim, H.J.; Kim, H.C.; Lee, J.C.; Park, E. Biomechanical Gait Analysis Using a Smartphone-Based Motion Capture System (OpenCap) in Patients with Neurological Disorders. Bioengineering 2024, 11, 911. [Google Scholar] [CrossRef]
- Nagorna, V.; Mytko, A.; Borysova, O.; Zhyhailova, L.; Achermann, B.; Lorenzetti, S. Biomechanical Analysis: Exploring Gender-Specific Differences in Velocity-Based Strength Training. Sport Sci. Spectr. 2024, 2, 20–26. [Google Scholar] [CrossRef]
- Aminian, K.; Najafi, B. Capturing human motion using body-fixed sensors: Outdoor measurement and clinical applications. Comput. Animat. Virtual Worlds 2004, 15, 79–94. [Google Scholar] [CrossRef]
- Tamir, M.; Oz, G. Real–Time Objects Tracking and Motion Capture in Sports Events. U.S. Patent 20080192116A1, 14 August 2008. [Google Scholar]
- Bregler, C. Motion capture technology for entertainment [in the spotlight]. IEEE Signal Process. Mag. 2007, 24, 156–160. [Google Scholar] [CrossRef]
- Geng, W.; Yu, G. Reuse of motion capture data in animation: A review. In Proceedings of the International Conference on Computational Science and Its Applications, Montreal, Canada, 18–21 May 2003; Springer: Berlin/Heidelberg, Germany; pp. 620–629. [Google Scholar]
- Field, M.; Stirling, D.; Naghdy, F.; Pan, Z. Motion capture in robotics review. In Proceedings of the 2009 IEEE International Conference on Control and Automation, Christchurch, New Zealand, 9–11 December 2009; pp. 1697–1702. [Google Scholar]
- Plantard, P.; Shum, H.P.; Le Pierres, A.-S.; Multon, F. Validation of an ergonomic assessment method using Kinect data in real workplace conditions. Appl. Ergon. 2017, 65, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Valero, E.; Sivanathan, A.; Bosché, F.; Abdel-Wahab, M. Analysis of construction trade worker body motions using a wearable and wireless motion sensor network. Autom. Constr. 2017, 83, 48–55. [Google Scholar] [CrossRef]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Med. Biol. Eng. Comput. 2017, 55, 609–619. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Y.; Li, C.; Dou, Y.; Wang, D.; Wu, Y.; Chen, X.; Liu, D. Validation of a Wearable System for Lower Extremity Assessment. Orthop. Surg. 2023, 15, 2911–2917. [Google Scholar] [CrossRef] [PubMed]
- Seel, T.; Raisch, J.; Schauer, T. IMU-Based Joint Angle Measurement for Gait Analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef]
- Karatsidis, A.; Jung, M.; Schepers, H.M.; Bellusci, G.; de Zee, M.; Veltink, P.H.; Andersen, M.S. Musculoskeletal model-based inverse dynamic analysis under ambulatory conditions using inertial motion capture. Med. Eng. Phys. 2019, 65, 68–77. [Google Scholar] [CrossRef]
- Bian, Q.; Castellani, M.; Shepherd, D.; Duan, J.; Ding, Z. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 822–830. [Google Scholar] [CrossRef]
- Di Marco, R.; Rossi, S.; Racic, V.; Cappa, P.; Mazzà, C. Concurrent repeatability and reproducibility analyses of four marker placement protocols for the foot–ankle complex. J. Biomech. 2016, 49, 3168–3176. [Google Scholar] [CrossRef]
- Pataky, T.C. One-dimensional statistical parametric mapping in Python. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 295–301. [Google Scholar] [CrossRef]
Motion Capture Method | Joint Angle MAE (deg) | Joint Torque MAE (%BW×BH) | GRF MAE (%BW) |
---|---|---|---|
IMU | 3~7 [31,32,33] | 0.6–1.4 [34] | 12.4% [33] |
Smartphone cameras [19] | 4.5 | 0.3–1.7 | 1.5–11.1% |
Joint/Segment | Direction of Movement |
---|---|
Pelvis | Tilt |
List | |
Rotation | |
Knee | Flexion |
Ankle | Flexion |
Hip | Flexion |
Adduction | |
Rotation |
No. | Age | Height (cm) | Weight (kg) | BMI (kg/m2) |
---|---|---|---|---|
1 | 21 | 161.5 | 79.7 | 30.56 |
2 | 38 | 172.0 | 65.4 | 22.11 |
3 | 23 | 176.3 | 102.1 | 32.85 |
4 | 29 | 170.0 | 51.1 | 17.68 |
5 | 22 | 181.8 | 80.1 | 24.24 |
6 | 23 | 179.5 | 67.8 | 21.04 |
7 | 21 | 176.6 | 79.8 | 25.59 |
RMSE | r | B | RMSE | r | B | |
Pelvis Tilt | Pelvis List | |||||
IMU | 5.49 (2.22) | 0.10 | −5.30, 8.51 | 3.86 (1.52) | 0.08 | −5.12, 4.22 |
OpenCap | 4.28 (1.47) | 0.26 | −4.13, 6.31 | 5.35 (0.97) | 0.10 | −4.57, 3.81 |
p-value | 0.013 a | 0.125 | ||||
Pelvis rotation | Hip flexion | |||||
IMU | 2.89 (1.75) | 0.85 | −2.17, 5.89 | 5.16 (1.32) | 0.99 | −5.77, 5.02 |
OpenCap | 2.81 (1.41) | 0.88 | −3.25, 1.37 | 6.16 (2.79) | 0.97 | −7.45, 1.50 |
p-value | 0.306 | 0.200 | ||||
Hip adduction | Hip rotation | |||||
IMU | 6.10 (1.35) | 0.59 | −3.67, 7.52 | 6.09 (1.74) | 0.33 | 0.04, 7.29 |
OpenCap | 4.06 (0.78) | 0.89 | −3.17, 3.55 | 4.82 (2.30) | 0.73 | −1.57, 8.60 |
p-value | 0.019 a | 0.009 a | ||||
Knee angle | Ankle angle | |||||
IMU | 5.74 (0.80) | 0.99 | 1.94, 5.86 | 7.47 (3.91) | 0.80 | −3.77, 11.23 |
OpenCap | 7.36 (3.14) | 0.94 | −2.92, 4.66 | 8.20 (3.00) | 0.80 | 1.12, 10.56 |
p-value | 0.020 a | 0.011 a |
ICC | ||||||||
---|---|---|---|---|---|---|---|---|
Pelvis tilt | Pelvis list | Pelvis rotation | Hip flexion | |||||
Vicon | IMU | Vicon | IMU | Vicon | IMU | Vicon | IMU | |
ROM | 0.194 | 0.529 | 0.563 | 0.793 | 0.283 | 0.964 | 0.641 | 0.931 |
S1 | 0.095 | 0.302 | 0.702 | 0.886 | 0.528 | 0.753 | 0.761 | 0.902 |
S2 | 0.472 | 0.154 | 0.560 | 0.133 | 0.374 | 0.079 | 0.951 | 0.912 |
S3 | 0.066 | 0.082 | 0.802 | 0.890 | 0.966 | 0.942 | 0.988 | 0.928 |
S4 | 0.001 | 0.834 | 0.783 | 0.903 | 0.933 | 0.938 | 0.933 | 0.999 |
S5 | 0.045 | 0.134 | 0.557 | 0.946 | 0.959 | 0.805 | 0.969 | 0.948 |
S6 | 0.035 | 0.545 | 0.839 | 0.745 | 0.912 | 0.960 | 0.891 | 0.986 |
S7 | 0.192 | 0.429 | 0.726 | 0.765 | 0.809 | 0.773 | 0.927 | 0.953 |
Mean | 0.129 | 0.354 | 0.710 | 0.753 | 0.783 | 0.750 | 0.917 | 0.947 |
p-value | 0.156 | 0.578 | 0.688 | 0.375 | ||||
Hip adduction | Hip rotation | Knee angle | Ankle angle | |||||
Vicon | IMU | Vicon | IMU | Vicon | IMU | Vicon | IMU | |
ROM | 0.653 | 0.749 | 0.082 | 0.840 | 0.883 | 0.885 | 0.585 | 0.026 |
S1 | 0.916 | 0.603 | 0.304 | 0.891 | 0.990 | 0.984 | 0.914 | 0.746 |
S2 | 0.978 | 0.218 | 0.091 | 0.842 | 0.991 | 0.980 | 0.829 | 0.876 |
S3 | 0.936 | 0.756 | 0.933 | 0.935 | 0.983 | 0.988 | 0.923 | 0.934 |
S4 | 0.837 | 0.534 | 0.942 | 0.302 | 0.992 | 0.996 | 0.926 | 0.554 |
S5 | 0.943 | 0.243 | 0.339 | 0.438 | 0.994 | 0.998 | 0.929 | 0.456 |
S6 | 0.849 | 0.749 | 0.811 | 0.847 | 0.986 | 0.988 | 0.983 | 0.830 |
S7 | 0.914 | 0.473 | 0.619 | 0.718 | 0.989 | 0.987 | 0.926 | 0.736 |
Mean | 0.910 | 0.511 | 0.577 | 0.710 | 0.989 | 0.988 | 0.919 | 0.733 |
p-value | 0.016 a | 0.203 | 0.984 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Bian, Q.; Kim, J.M.; Alsayed, K.; Ding, Z. Measuring Lower-Limb Kinematics in Walking: Wearable Sensors Achieve Comparable Reliability to Motion Capture Systems and Smartphone Cameras. Sensors 2025, 25, 2899. https://doi.org/10.3390/s25092899
Ma P, Bian Q, Kim JM, Alsayed K, Ding Z. Measuring Lower-Limb Kinematics in Walking: Wearable Sensors Achieve Comparable Reliability to Motion Capture Systems and Smartphone Cameras. Sensors. 2025; 25(9):2899. https://doi.org/10.3390/s25092899
Chicago/Turabian StyleMa, Peiyu, Qingyao Bian, Jin Min Kim, Khalid Alsayed, and Ziyun Ding. 2025. "Measuring Lower-Limb Kinematics in Walking: Wearable Sensors Achieve Comparable Reliability to Motion Capture Systems and Smartphone Cameras" Sensors 25, no. 9: 2899. https://doi.org/10.3390/s25092899
APA StyleMa, P., Bian, Q., Kim, J. M., Alsayed, K., & Ding, Z. (2025). Measuring Lower-Limb Kinematics in Walking: Wearable Sensors Achieve Comparable Reliability to Motion Capture Systems and Smartphone Cameras. Sensors, 25(9), 2899. https://doi.org/10.3390/s25092899