Agility in Handball: Position- and Age-Specific Insights in Performance and Kinematics Using Proximity and Wearable Inertial Sensors
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Design
2.3. Procedure
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Condition
3.2. Age Group
3.3. Playing Position
4. Discussion
4.1. Condition
4.2. Age Group
4.3. Playing Position
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Sánchez, C.; Navarro, R.M.; Karcher, C.; de la Rubia, A. Physical Demands during Official Competitions in Elite Handball: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 3353. [Google Scholar] [CrossRef] [PubMed]
- Büchel, D.; Döring, M.; Baumeister, J. The burdens of sitting on the bench—Comparison of absolute and relative match physical load between handball players with high and low court time and implications for compensatory training. J. Sports Sci. 2024, 42, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.; Young, W. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef]
- Herold, F.; Hamacher, D.; Schega, L.; Müller, N.G. Thinking while moving or moving while thinking—Concepts of motor-cognitive training for cognitive performance enhancement. Front. Aging Neurosci. 2018, 10, 228. [Google Scholar] [CrossRef]
- Gokeler, A.; Tosarelli, F.; Buckthorpe, M.; della Villa, F. Neurocognitive Errors and Noncontact Anterior Cruciate Ligament Injuries in Professional Male Soccer Players. J. Athl. Train. 2024, 59, 262–269. [Google Scholar] [CrossRef]
- Voss, M.; Kramer, A.; Basak, C.; Prakash, R.S.; Roberts, B. Are Expert Athletes ‘Expert’ in the Cognitive Laboratory? A Meta-Analytic Review of Cognition and Sport Expertise. Appl. Cogn. Psychol. 2010, 24, 812–826. [Google Scholar] [CrossRef]
- Della Villa, F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; della Villa, S. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br. J. Sports Med. 2020, 54, 1423–1432. [Google Scholar] [CrossRef]
- Krosshaug, T.; Nakamae, A.; Boden, B.P.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E.; Bahr, R. Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am. J. Sports Med. 2007, 35, 359–367. [Google Scholar] [CrossRef]
- Spasic, M.; Krolo, A.; Zenic, N.; Delextrat, A.; Sekulic, D. Reactive Agility Performance in Handball; Development and Evaluation of a Sport-Specific Measurement Protocol. J. Sports Sci. Med. 2015, 14, 501–506. [Google Scholar]
- Jansen, M.G.T.; Elferink-Gemser, M.T.; Hoekstra, A.E.; Faber, I.R.; Huijgen, B.C.H. Design of a Tennis-Specific Agility Test (TAT) for Monitoring Tennis Players. J. Hum. Kinet. 2021, 80, 239–250. [Google Scholar] [CrossRef]
- Badau, D.; Badau, A.; Ene-Voiculescu, C.; Larion, A.; Ene-Voiculescu, V.; Mihaila, I.; Fleancu, J.L.; Tudor, V.; Tifrea, C.; Cotovanu, A.S.; et al. The Impact of Implementing an Exergame Program on the Level of Reaction Time Optimization in Handball, Volleyball, and Basketball Players. Int. J. Environ. Res. Public Health 2022, 19, 5598. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M.; Sherman, D.A.; Duncan, S.; Murray, A.; Chaput, M.; Murray, A.; Bazett-Jones, D.M.; Norte, G.E. Test-retest reliability and visual perturbation performance costs during 2 reactive agility tasks. J. Sport Rehabil. 2024, 33, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Morral-Yepes, M.; Moras, G.; Bishop, C.; Gonzalo-Skok, O. Assessing the Reliability and Validity of Agility Testing in Team Sports: A Systematic Review. J. Strength Cond. Res. 2022, 7, 2035–2049. [Google Scholar] [CrossRef]
- Pojskic, H.; Pagaduan, J.; Uzicanin, E.; Separovic, V.; Spasic, M.; Foretic, N.; Sekulic, D. Reliability, validity and usefulness of a new response time test for agility-based sports: A simple vs. complex motor task. J. Sports Sci. Med. 2019, 18, 623–635. [Google Scholar]
- Brown, S.R.; Brughelli, M.; Hume, P.A. Knee Mechanics During Planned and Unplanned Sidestepping: A Systematic Review and Meta-Analysis. Sports Med. 2014, 44, 1573–1588. [Google Scholar] [CrossRef]
- Meinerz, C.M.; Malloy, P.; Geiser, C.F.; Kipp, K. Anticipatory Effects on Lower Extremity Neuromechanics During a Cutting Task. J. Athl. Train. 2015, 50, 905–913. [Google Scholar] [CrossRef]
- Haugen, T.; Seiler, S. Physical and physiological characteristics of male handball players: Influence of playing position and competitive level. J. Sports Med. Phys. Fit. 2016, 56, 19–26. [Google Scholar]
- Wagner, H.; Hinz, M.; Fuchs, P.; Bell, J.W.; von Duvillard, S.P. Specific Game-Based Performance in Elite Male Adolescent Team Handball Players. Int. J. Sports Physiol. Perform. 2022, 17, 901–907. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; McBurnie, A.; Comfort, P.; Jones, P.A. Biomechanica. Determinants of Performance and Injury Risk During Cutting: A Performance-Injury Conflict? Sports Med. 2021, 51, 1983–1998. [Google Scholar] [CrossRef]
- Heuvelmans, P.; Benjaminse, A.; Bolt, R.; Baumeister, J.; Otten, E.; Gokeler, A. Concurrent validation of the Noraxon MyoMotion wearable inertial sensors in change-of-direction and jump-landing tasks. Sports Biomech. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Büchel, D.; Gokeler, A.; Heuvelmans, P.; Baumeister, J. Increased Cognitive Demands Affect Agility Performance in Female Athletes—Implications for Testing and Training of Agility in Team Ball Sports. Percept. Mot. Ski. 2022, 129, 1074–1088. [Google Scholar] [CrossRef]
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J.; Donnelly, C.J.W. Simultaneously assessing amplitude and temporal effects in biomechanical trajectories using nonlinear registration and statistical nonparametric mapping. J. Biomech. 2022, 136, 111049. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Chaput, M.; Simon, J.E.; Taberner, M.; Grooms, D.R. From Control to Chaos: VisualCognitive Progression During Recovery From ACL Reconstruction. J. Orthop. Sports Phys. Ther. 2024, 54, 431–439. [Google Scholar] [CrossRef]
- Fasold, F.; Braun, A.; Klatt, S. Effects of Arm Dominance and Decision Demands on Change of Direction Performance in Handball Players. J. Hum. Kinet. 2023, 85, 127–135. [Google Scholar] [CrossRef]
- Heppe, H.; Zentgraf, K. Team Handball Experts Outperform Recreational Athletes in Hand and Foot Response Inhibition: A Behavioral Study. Front. Psychol. 2019, 10, 971. [Google Scholar] [CrossRef]
- Heuvelmans, P.; Gondwe, B.; Benjaminse, A.; Nijmeijer, E.M.; Baumeister, J.; Gokeler, A. Stop-Signal Task on a Training Platform Induces Player-Level Adaptations in Team Sport Athletes; Exercise Science and Neuroscience Unit, Department of Exercise & Health, Paderborn University: Paderborn, Germany, 2025; to be submitted. [Google Scholar]
- Zsakai, A.; Zselyke Ratz-Sulyok, F.; Jang-Kapuy, C.; Petridis, L.; Bakonyi, P.; Dobronyi, T.; Juhasz, I.; Szabo, T. Muscular robusticity and strength in the lower extremities in elite handball players. Sci. Rep. 2024, 14, 28883. [Google Scholar] [CrossRef]
- Hoang, H.X.; Reinbolt, J.A. Crouched posture maximizes ground reaction forces generated by muscles. Gait Posture 2012, 36, 405–408. [Google Scholar] [CrossRef]
- Mulligan, C.M.S.; Johnson, S.T.; Pollard, C.D.; Hannigan, K.S.; Athanasiadis, D.; Norcross, M.F. Deceleration Profiles Between the Penultimate and Final Steps of Planned and Reactive Side-Step Cutting. J. Athl. Train. 2024, 59, 173–181. [Google Scholar] [CrossRef]
- Karcher, C.; Buchheit, M. On-Court demands of elite handball, with special reference to playing positions. Sports Med. 2014, 44, 797–814. [Google Scholar] [CrossRef]
- Font, R.; Karcher, C.; Reche, X.; Carmona, G.; Tremps, V.; Irurtia, A. Monitoring external load in elite male handball players depending on playing positions. Biol. Sport 2021, 38, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Póvoas, S.C.A.; Ascensão, A.A.M.R.; Magalhães, J.; Seabra, A.F.; Krustrup, P.; Soares, J.M.C.; Rebelo, A.N.C. Physiological demands of elite team handball with special reference to playing position. J. Strength Cond. Res. 2014, 28, 430–442. [Google Scholar] [CrossRef]
- Bøgild, P.; Jensen, K.; Kvorning, T. Original Research Physiological Performance Characteristics of Danish National Team Handball Players. J. Strength Cond. Res. 2020, 34, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Carton-Llorente, A.; Lozano, D.; Iglesias, V.G.; Jorquera, D.M.; Manchado, C. Worst-case scenario analysis of physical demands in elite men handball players by playing position through big data analytics. Biol. Sport 2023, 40, 1219–1227. [Google Scholar] [CrossRef]
- Manchado, C.; Pueo, B.; Chirosa-Rios, L.J.; Tortosa-Martínez, J. Time–motion analysis by playing positions of male handball players during the European championship 2020. Int. J. Environ. Res. Public Health 2021, 18, 2787. [Google Scholar] [CrossRef]
- Saal, C.; Baumgart, C.; Wegener, F.; Ackermann, N.; Sölter, F.; Hoppe, M.W. Physical match demands of four LIQUI-MOLY Handball-Bundesliga teams from 2019–2022: Effects of season, team, match outcome, playing position, and halftime. Front. Sports Act. Living 2023, 5, 1183881. [Google Scholar] [CrossRef]
- Gibson, J.J. The Ecological Approach to Visual Perception; Houghton, Mifflin and Company: Boston, MA, USA, 1979. [Google Scholar]
- Scanlan, A.T.; Tucker, P.S.; Dalbo, V.J. A Comparison of Linear Speed, Closed-Skill Agility, and Open-Skill Agility Qualities Between Backcourt and Frontcourt Adult Semiprofessional Male Basketball Players. J. Strength Cond. Res. 2014, 28, 1319–1327. [Google Scholar] [CrossRef]
- Scanlan, A.T.; Wen, N.; Kidcaff, A.P.; Berkelmans, D.M.; Tucker, P.S.; Dalbo, V.J. Generic and sport-specific reactive agility tests assess different qualities in court-based team sport athletes. J. Sports Med. Phys. Fit. 2016, 56, 206–213. [Google Scholar]
- Nimphius, S.; Callaghan, S.J.; Bezodis, N.E.; Lockie, R.G. Change of Direction and Agility Tests: Challenging Our Current Measures of Performance. Strength Cond. J. 2018, 40, 26–38. [Google Scholar] [CrossRef]
- Tucker, J.D.; Wu, W.; Srivastava, A. Generative models for functional data using phase and amplitude separation. Comput. Stat. Data Anal. 2013, 61, 50–66. [Google Scholar] [CrossRef]
- Blauberger, P.; Marzilger, R.; Lames, M. Validation of player and ball tracking with a local positioning system. Sensors 2021, 21, 1465. [Google Scholar] [CrossRef] [PubMed]
Adult | Youth | |||
---|---|---|---|---|
N = 66 | N = 26 | U | p | |
Age (yrs) | 24.00 (22.00–27.00) | 17.00 (17.00–18.00) | 1716.00 | <0.001 * |
Height (cm) | 192.50 (189.00–196.00) | 186.00 (183.00–196.25) | 1116.00 | 0.025 * |
Weight (kg) | 95.90 (89.25–104.67) | 83.75 (77.20–96.17) | 1245.50 | <0.001 * |
Backcourt | Pivot | Wing | |||
---|---|---|---|---|---|
N = 47 | N = 20 | N = 25 | H | p | |
Age (yrs) | 22.00 (18.00–25.00) | 24.00 (18.75–27.25) | 23.00 (18.00–24.00) | 1.49 | 0.475 |
Height (cm) | 192.00 * (185.00–196.00) | 196.50 * (195.00–199.25) | 187.00 * (182.00–191.00) | 28.34 | <0.001 |
Weight (kg) | 94.00 * (84.25–100.25) | 108.90 * (99.35–116.08) | 86.00 * (80.00–90.90) | 36.29 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heuvelmans, P.; Gokeler, A.; Benjaminse, A.; Baumeister, J.; Büchel, D. Agility in Handball: Position- and Age-Specific Insights in Performance and Kinematics Using Proximity and Wearable Inertial Sensors. Sensors 2025, 25, 2728. https://doi.org/10.3390/s25092728
Heuvelmans P, Gokeler A, Benjaminse A, Baumeister J, Büchel D. Agility in Handball: Position- and Age-Specific Insights in Performance and Kinematics Using Proximity and Wearable Inertial Sensors. Sensors. 2025; 25(9):2728. https://doi.org/10.3390/s25092728
Chicago/Turabian StyleHeuvelmans, Pieter, Alli Gokeler, Anne Benjaminse, Jochen Baumeister, and Daniel Büchel. 2025. "Agility in Handball: Position- and Age-Specific Insights in Performance and Kinematics Using Proximity and Wearable Inertial Sensors" Sensors 25, no. 9: 2728. https://doi.org/10.3390/s25092728
APA StyleHeuvelmans, P., Gokeler, A., Benjaminse, A., Baumeister, J., & Büchel, D. (2025). Agility in Handball: Position- and Age-Specific Insights in Performance and Kinematics Using Proximity and Wearable Inertial Sensors. Sensors, 25(9), 2728. https://doi.org/10.3390/s25092728