AI and Data-Driven Advancements in Industry 4.0
1. AI in Industry
1.1. AI in Robotic
1.2. AI in Medicine
1.3. AI in Blockchain
2. Trustworthy AI
3. Conclusions
Conflicts of Interest
List of Contributions
- 1.
- Ferreiro-Cabello, J.; Martinez-de Pison, F.J.; Fraile-Garcia, E.; Pernia-Espinoza, A.; Divasón, J. Intelligent Sensor Software for Robust and Energy-Sustainable Decision-Making in Welding of Steel Reinforcement for Concrete. Sensors 2024, 25, 28.
- 2.
- El-Asfoury, M.S.; Baraya, M.; El Shrief, E.; Abdelgawad, K.; Sultan, M.; Abass, A. AI-Based Prediction of Ultrasonic Vibration-Assisted Milling Performance. Sensors 2024, 24, 5509.
- 3.
- Liu, Y.; Qin, Y.; Lin, Z.; Xia, H.; Wang, C. Detection of Scratch Defects on Metal Surfaces Based on MSDD-UNet. Electronics 2024, 13, 3241.
- 4.
- ZhuParris, A.; de Goede, A.A.; Yocarini, I.E.; Kraaij, W.; Groeneveld, G.J.; Doll, R.J. Machine learning techniques for developing remotely monitored central nervous system biomarkers using wearable sensors: A narrative literature review. Sensors 2023, 23, 5243.
- 5.
- Chang, S.; Wu, Y.; Deng, S.; Ma, W.; Zhou, H. Task-Importance-Oriented Task Selection and Allocation Scheme for Mobile Crowdsensing. Mathematics 2024, 12, 2471.
- 6.
- Zhou, L.; Wang, R.; Zhang, L. Accurate Robot Arm Attitude Estimation Based on Multi-View Images and Super-Resolution Keypoint Detection Networks. Sensors 2024, 24, 305.
- 7.
- Wu, H.; Qi, J.; Purwanto, E.; Zhu, X.; Yang, P.; Chen, J. Multi-scale feature and multi-channel selection toward parkinson’s disease diagnosis with eeg. Sensors 2024, 24, 4634.
- 8.
- Varlamova, E.V.; Butakova, M.A.; Semyonova, V.V.; Soldatov, S.A.; Poltavskiy, A.V.; Kit, O.I.; Soldatov, A.V. Machine learning meets cancer. Cancers 2024, 16, 1100.
- 9.
- Yuan, Y.; Zhang, Y.; Zhu, L.; Cai, L.; Qian, Y. Exploiting cross-scale attention transformer and progressive edge refinement for retinal vessel segmentation. Mathematics 2024, 12, 264.
- 10.
- Yang, J.; Zhang, W.; Guo, Z.; Gao, Z. TrustDFL: A blockchain-based verifiable and trusty decentralized federated learning framework. Electronics 2023, 13, 86.
- 11.
- Deng, W.; Wei, H.; Huang, T.; Cao, C.; Peng, Y.; Hu, X. Smart contract vulnerability detection based on deep learning and multimodal decision fusion. Sensors 2023, 23, 7246.
References
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 604–624. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [PubMed]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Zha, D.; Bhat, Z.P.; Lai, K.H.; Yang, F.; Jiang, Z.; Zhong, S.; Hu, X. Data-centric artificial intelligence: A survey. ACM Comput. Surv. 2025, 57, 1–42. [Google Scholar]
- Paheding, S.; Saleem, A.; Siddiqui, M.F.H.; Rawashdeh, N.; Essa, A.; Reyes, A.A. Advancing horizons in remote sensing: A comprehensive survey of deep learning models and applications in image classification and beyond. Neural Comput. Appl. 2024, 36, 16727–16767. [Google Scholar] [CrossRef]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar]
- Xu, P.; Zhu, X.; Clifton, D.A. Multimodal learning with transformers: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 12113–12132. [Google Scholar]
- Rai, R.; Tiwari, M.K.; Ivanov, D.; Dolgui, A. Machine learning in manufacturing and industry 4.0 applications. Int. J. Prod. Res. 2021, 59, 4773–4778. [Google Scholar]
- Hirsch, L.; Huang, Y.; Luo, S.; Rossi Saccarelli, C.; Lo Gullo, R.; Daimiel Naranjo, I.; Bitencourt, A.G.; Onishi, N.; Ko, E.S.; Leithner, D.; et al. Radiologist-level performance by using deep learning for segmentation of breast cancers on MRI scans. Radiol. Artif. Intell. 2021, 4, e200231. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Rahimi, A. Deep learning methods for object detection in smart manufacturing: A survey. J. Manuf. Syst. 2022, 64, 181–196. [Google Scholar]
- Zolanvari, M.; Teixeira, M.A.; Gupta, L.; Khan, K.M.; Jain, R. Machine learning-based network vulnerability analysis of industrial Internet of Things. IEEE Internet Things J. 2019, 6, 6822–6834. [Google Scholar]
- Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [PubMed]
- Juhn, Y.; Liu, H. Artificial intelligence approaches using natural language processing to advance EHR-based clinical research. J. Allergy Clin. Immunol. 2020, 145, 463–469. [Google Scholar]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar]
- Du, X.; Yu, J. Image-integrated magnetic actuation systems for localization and remote actuation of medical miniature robots: A survey. IEEE Trans. Robot. 2023, 39, 2549–2568. [Google Scholar]
- Sünderhauf, N.; Brock, O.; Scheirer, W.; Hadsell, R.; Fox, D.; Leitner, J.; Upcroft, B.; Abbeel, P.; Burgard, W.; Milford, M.; et al. The limits and potentials of deep learning for robotics. Int. J. Robot. Res. 2018, 37, 405–420. [Google Scholar]
- Aziz, A.; Pane, S.; Iacovacci, V.; Koukourakis, N.; Czarske, J.; Menciassi, A.; Medina-Sánchez, M.; Schmidt, O.G. Medical imaging of microrobots: Toward in vivo applications. ACS Nano 2020, 14, 10865–10893. [Google Scholar]
- Mao, Q.; Liao, Z.; Yuan, J.; Zhu, R. Multimodal tactile sensing fused with vision for dexterous robotic housekeeping. Nat. Commun. 2024, 15, 6871. [Google Scholar]
- Qiao, H.; Chen, J.; Huang, X. A survey of brain-inspired intelligent robots: Integration of vision, decision, motion control, and musculoskeletal systems. IEEE Trans. Cybern. 2021, 52, 11267–11280. [Google Scholar]
- Hayes-Roth, B.; Thorndyke, P.W. Paradigms for intelligent systems. Educ. Psychol. 1985, 20, 231–241. [Google Scholar]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar]
- Keesara, S.; Jonas, A.; Schulman, K. COVID-19 and health care’s digital revolution. N. Engl. J. Med. 2020, 382, e82. [Google Scholar]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar]
- Rahman, Z.; Yi, X.; Khalil, I. Blockchain-based AI-enabled industry 4.0 CPS protection against advanced persistent threat. IEEE Internet Things J. 2022, 10, 6769–6778. [Google Scholar]
- Kumar, S.; Lim, W.M.; Sivarajah, U.; Kaur, J. Artificial intelligence and blockchain integration in business: Trends from a bibliometric-content analysis. Inf. Syst. Front. 2023, 25, 871–896. [Google Scholar]
- Liu, X.; Sun, S.X.; Huang, G. Decentralized services computing paradigm for blockchain-based data governance: Programmability, interoperability, and intelligence. IEEE Trans. Serv. Comput. 2019, 13, 343–355. [Google Scholar]
- Bathula, A.; Gupta, S.K.; Merugu, S.; Saba, L.; Khanna, N.N.; Laird, J.R.; Sanagala, S.S.; Singh, R.; Garg, D.; Fouda, M.M.; et al. Blockchain, artificial intelligence, and healthcare: The tripod of future—A narrative review. Artif. Intell. Rev. 2024, 57, 238. [Google Scholar]
- Issa, W.; Moustafa, N.; Turnbull, B.; Sohrabi, N.; Tari, Z. Blockchain-based federated learning for securing internet of things: A comprehensive survey. ACM Comput. Surv. 2023, 55, 1–43. [Google Scholar]
- Hu, Y.; Kuang, W.; Qin, Z.; Li, K.; Zhang, J.; Gao, Y.; Li, W.; Li, K. Artificial intelligence security: Threats and countermeasures. ACM Comput. Surv. (CSUR) 2021, 55, 1–36. [Google Scholar] [CrossRef]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.Z. XAI—Explainable artificial intelligence. Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Huang, T.; Wang, Q. AI and Data-Driven Advancements in Industry 4.0. Sensors 2025, 25, 2249. https://doi.org/10.3390/s25072249
Pang Y, Huang T, Wang Q. AI and Data-Driven Advancements in Industry 4.0. Sensors. 2025; 25(7):2249. https://doi.org/10.3390/s25072249
Chicago/Turabian StylePang, Yan, Teng Huang, and Qiong Wang. 2025. "AI and Data-Driven Advancements in Industry 4.0" Sensors 25, no. 7: 2249. https://doi.org/10.3390/s25072249
APA StylePang, Y., Huang, T., & Wang, Q. (2025). AI and Data-Driven Advancements in Industry 4.0. Sensors, 25(7), 2249. https://doi.org/10.3390/s25072249