Developmental Trends in Postural Adjustments During Reaching in Early Childhood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment
2.3. Procedures
2.4. Data Processing
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasertsakul, T.; Kaimuk, P.; Chinjenpradit, W.; Limroongreungrat, W.; Charoensuk, W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: A randomized preliminary study. Biomed. Eng. Online 2018, 17, 124. [Google Scholar]
- Adolph, K.E.; Hoch, J.E. The Importance of Motor Skills for Development. Nestle Nutr. Inst. Workshop Ser. 2020, 95, 136–144. [Google Scholar] [PubMed]
- van der Putten, J.J.; Hobart, J.C.; Freeman, J.A.; Thompson, A.J. Measuring change in disability after inpatient rehabilitation: Comparison of the responsiveness of the Barthel index and the Functional Independence Measure. J. Neurol. Neurosurg. Psychiatry 1999, 66, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Traynor, R.; Galea, V.; Pierrynowski, M.R. The development of rhythm regularity, neuromuscular strategies, and movement smoothness during repetitive reaching in typically developing children. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2012, 22, 259–265. [Google Scholar]
- von Hofsten, C.; Fazel-Zandy, S. Development of visually guided hand orientation in reaching. J. Exp. Child Psychol. 1984, 38, 208–219. [Google Scholar] [PubMed]
- Thelen, E.; Spencer, J.P. Postural control during reaching in young infants: A dynamic systems approach. Neurosci. Biobehav. Rev. 1998, 22, 507–514. [Google Scholar] [PubMed]
- van Balen, L.C.; Dijkstra, L.J.; Hadders-Algra, M. Development of postural adjustments during reaching in typically developing infants from 4 to 18 months. Exp. Brain Res. 2012, 220, 109–119. [Google Scholar] [PubMed]
- van der Heide, J.C.; Otten, B.; van Eykern, L.A.; Hadders-Algra, M. Development of postural adjustments during reaching in sitting children. Exp. Brain Res. 2003, 151, 32–45. [Google Scholar] [PubMed]
- Aboelnasr, E.A.; Hegazy, F.A.; Altalway, H.A. Kinematic characteristics of reaching in children with hemiplegic cerebral palsy: A comparative study. Brain Inj. 2017, 31, 83–89. [Google Scholar] [PubMed]
- Schneiberg, S.; Sveistrup, H.; McFadyen, B.; McKinley, P.; Levin, M.F. The development of coordination for reach-to-grasp movements in children. Exp. Brain Res. 2002, 146, 142–154. [Google Scholar] [PubMed]
- Bigongiari, A.; Souza, F.d.A.e.; Franciulli, P.M.; Neto, S.E.R.; Araujo, R.C.; Mochizuki, L. Anticipatory and compensatory postural adjustments in sitting in children with cerebral palsy. Hum. Mov. Sci. 2011, 30, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Bondi, D.; Robazza, C.; Lange-Küttner, C.; Pietrangelo, T. Fine motor skills and motor control networking in developmental age. Am. J. Hum. Biol. 2022, 34, e23758. [Google Scholar]
- Ghez, C.; Krakauer, J. The organization of movement. In Principles of Neuroscience, 4th ed.; Kandel, E., Schwartz, J., Jessel, T., Eds.; McGraw-Hill: New York, NY, USA, 2006; pp. 653–673. [Google Scholar]
- Hestbaek, L.; Andersen, S.T.; Skovgaard, T.; Olesen, L.G.; Elmose, M.; Bleses, D.; Andersen, S.C.; Lauridsen, H.H. Influence of motor skills training on children’s development evaluated in the Motor skills in PreSchool (MiPS) study-DK: Study protocol for a randomized controlled trial, nested in a cohort study. Trials 2017, 18, 400. [Google Scholar] [PubMed]
- Shumway-cook, A.; Woollacott, M.H.; Rachwani, J.; Santamaria, V. Motol Control Translating Research into Clinical Practice; People’s Health Press: Beijing, China, 2009. [Google Scholar]
- Aruin, A.S.; Latash, M.L. Directional specificity of postural muscles in feed-forward postural reactions during fast voluntary arm movements. Exp. Brain Res. 1995, 103, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.; Martin, N.; Assaiante, C. Development of anticipatory postural adjustments in a bimanual load-lifting task in children. Exp. Brain Res. 1999, 126, 200–204. [Google Scholar] [PubMed]
- Cignetti, F.; Zedka, M.; Vaugoyeau, M.; Assaiante, C. Independent walking as a major skill for the development of anticipatory postural control: Evidence from adjustments to predictable perturbations. PLoS ONE 2013, 8, e56313. [Google Scholar]
- Cesari, P.; Piscitelli, F.; Pascucci, F.; Bertucco, M. Postural Threat Influences the Coupling Between Anticipatory and Compensatory Postural Adjustments in Response to an External Perturbation. Neuroscience 2022, 490, 25–35. [Google Scholar] [PubMed]
- Kaewmanee, T.; Liang, H.; Aruin, A.S. Effect of predictability of the magnitude of a perturbation on anticipatory and compensatory postural adjustments. Exp. Brain Res. 2020, 238, 2207–2219. [Google Scholar] [PubMed]
- Burtner, P.A.; Woollacott, M.H.; Craft, G.L.; Roncesvalles, M.N. The capacity to adapt to changing balance threats: A comparison of children with cerebral palsy and typically developing children. Dev. Neurorehabilit. 2007, 10, 249–260. [Google Scholar]
Age Group | Age (Years) | Height (cm) | Weight (kg) | BMI (kg/m2) |
---|---|---|---|---|
3 years old(n = 21) | 3.53 ± 0.30 | 101.15 ± 3.94 | 16.43 ± 2.54 | 16.03 ± 2.01 |
4 years old (n = 49) | 4.46 ± 0.23 | 108.52 ± 3.98 a | 18.66 ± 2.39 | 15.79 ± 1.22 |
5 years old (n = 49) | 5.45 ± 0.23 | 116.13 ± 5.08 ab | 22.14 ± 4.61 ab | 16.28 ± 2.24 |
6 years old (n = 16) | 6.22 ± 0.13 | 121.36 ± 4.01 abc | 23.73 ± 3.96 ab | 16.03 ± 1.78 |
All (n = 135) | 4.88 ± 0.86 | 111.6 ± 67.65 | 20.18 ± 4.28 | 16.04 ± 1.83 |
Dependent Variable | Tasks | Effect Level | df | F | sig | η2 |
---|---|---|---|---|---|---|
Completion Time (s) | Planar touch | Age | 3 | 21.263 | 0.000 | 0.347 |
Gender | 1 | 0.169 | 0.681 | 0.001 | ||
High touch | Age | 3 | 5.500 | 0.001 | 0.124 | |
Gender | 1 | 0.000 | 0.987 | 0.000 | ||
Wrist Angle (deg) | Planar touch | Age | 3 | 1.205 | 0.311 | 0.029 |
Gender | 1 | 0.112 | 0.739 | 0.001 | ||
High touch | Age | 3 | 2.808 | 0.043 | 0.067 | |
Gender | 1 | 2.648 | 0.106 | 0.022 | ||
Elbow Angle (deg) | Planar touch | Age | 3 | 1.823 | 0.147 | 0.043 |
Gender | 1 | 1.11 | 0.294 | 0.009 | ||
High touch | Age | 3 | 4.607 | 0.004 | 0.105 | |
Gender | 1 | 1.043 | 0.309 | 0.009 | ||
Shoulder Angle (deg) | Planar touch | Age | 3 | 9.885 | 0.000 | 0.197 |
Gender | 1 | 1.89 | 0.172 | 0.015 | ||
High touch | Age | 3 | 7.939 | 0.000 | 0.168 | |
Gender | 1 | 0.072 | 0.788 | 0.001 | ||
Wrist Angular Velocity (rad/s) | Planar touch | Age | 3 | 1.045 | 0.375 | 0.025 |
Gender | 1 | 0.008 | 0.929 | 0.000 | ||
High touch | Age | 3 | 0.489 | 0.690 | 0.012 | |
Gender | 1 | 0.430 | 0.513 | 0.004 | ||
Elbow Angular Velocity (rad/s) | Planar touch | Age | 3 | 1.758 | 0.159 | 0.042 |
Gender | 1 | 4.032 | 0.047 | 0.032 | ||
High touch | Age | 3 | 0.795 | 0.499 | 0.020 | |
Gender | 1 | 0.023 | 0.879 | 0.000 | ||
Shoulder Angular Velocity (rad/s) | Planar touch | Age | 3 | 1.029 | 0.382 | 0.025 |
Gender | 1 | 0.639 | 0.426 | 0.005 | ||
High touch | Age | 3 | 0.878 | 0.455 | 0.022 | |
Gender | 1 | 0.056 | 0.813 | 0.000 |
Dependent Variable | Tasks | Effect Level | df | F | sig | η2 |
---|---|---|---|---|---|---|
ECU (0–1) (mV·s) | Planar touch | Age | 3 | 2.339 | 0.077 | 0.055 |
Gender | 1 | 0.020 | 0.888 | 0.000 | ||
High touch | Age | 3 | 5.004 | 0.003 | 0.113 | |
Gender | 1 | 0.072 | 0.789 | 0.001 | ||
ECU (APAs) (mV·s) | Planar touch | Age | 3 | 1.718 | 0.167 | 0.041 |
Gender | 1 | 0.001 | 0.974 | 0.000 | ||
High touch | Age | 3 | 6.646 | 0.000 | 0.145 | |
Gender | 1 | 0.081 | 0.777 | 0.001 | ||
ECU (CPAs) (mV·s) | Planar touch | Age | 3 | 5.312 | 0.002 | 0.116 |
Gender | 1 | 0.361 | 0.549 | 0.003 | ||
High touch | Age | 3 | 7.914 | 0.000 | 0.168 | |
Gender | 1 | 0.451 | 0.503 | 0.004 | ||
FCR (0–1) (mV·s) | Planar touch | Age | 3 | 1.456 | 0.230 | 0.035 |
Gender | 1 | 1.000 | 0.319 | 0.008 | ||
High touch | Age | 3 | 0.332 | 0.802 | 0.008 | |
Gender | 1 | 0.142 | 0.707 | 0.001 | ||
FCR (APAs) (mV·s) | Planar touch | Age | 3 | 0.521 | 0.669 | 0.013 |
Gender | 1 | 4.596 | 0.050 | 0.037 | ||
High touch | Age | 3 | 0.400 | 0.753 | 0.010 | |
Gender | 1 | 2.792 | 0.097 | 0.023 | ||
FCR (CPAs) (mV·s) | Planar touch | Age | 3 | 2.372 | 0.074 | 0.056 |
Gender | 1 | 0.051 | 0.822 | 0.000 | ||
High touch | Age | 3 | 3.125 | 0.050 | 0.074 | |
Gender | 1 | 0.002 | 0.969 | 0.000 |
Dependent Variable | Tasks | 3 (n = 21) | 4 (n = 49) | 5 (n = 49) | 6 (n = 16) | All (n = 135) |
---|---|---|---|---|---|---|
Completion Time (s) | Planar touch | 7.03 ± 1.52 | 5.12 ± 1.19 a | 4.92 ± 1.09 a | 4.13 ± 0.35 abc | 5.23 ± 1.41 |
High touch | 4.44 ± 1.02 | 3.53 ± 0.89 a | 3.46 ± 0.74 a | 3.38 ± 1.47 a | 3.61 ± 1.00 | |
Wrist Angle (deg) | Planar touch | 153.86 ± 18.07 | 161.11 ± 26.53 | 163.63 ± 11.93 | 165.67 ± 7.95 | 161.43 ± 19.40 |
High touch | 149.31 ± 20.86 | 155.91 ± 12.29 | 157.94 ± 12.46 | 162.04 ± 11.35 a | 156.42 ± 14.13 | |
Elbow Angle (deg) | Planar touch | 151.96 ± 12.48 | 147.55 ± 14.90 | 150.15 ± 13.63 | 155.42 ± 10.64 | 150.12 ± 13.72 |
High touch | 145.46 ± 18.30 | 137.55 ± 15.61 | 130.60 ± 17.04 a | 141.27 ± 14.25 | 136.73 ± 17.04 | |
Shoulder Angle (deg) | Planar touch | 128.83 ± 8.99 | 121.38 ± 12.04 | 115.97 ± 11.67 a | 111.50 ± 9.07 ab | 119.42 ± 12.20 |
High touch | 148.79 ± 14.88 | 143.59 ± 18.13 | 130.89 ± 15.86 ab | 129.59 ± 15.03 ab | 138.06 ± 17.95 | |
ECU (0–1) (mV·s) | Planar touch | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 |
High touch | 0.04 ± 0.02 | 0.03 ± 0.02 a | 0.03 ± 0.01 a | 0.02 ± 0.01 a | 0.03 ± 0.02 | |
ECU (APAs) (mV·s) | Planar touch | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.02 ± 0.01 |
High touch | 0.03 ± 0.02 | 0.02 ± 0.02 a | 0.02 ± 0.01 a | 0.01 ± 0.01 a | 0.02 ± 0.01 | |
ECU (CPAs) (mV·s) | Planar touch | 0.04 ± 0.02 | 0.02 ± 0.02 | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.02 |
High touch | 0.04 ± 0.02 | 0.03 ± 0.02 a | 0.02 ± 0.01 a | 0.01 ± 0.01 a | 0.03 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Ma, K.; Wang, T.; Liu, Z. Developmental Trends in Postural Adjustments During Reaching in Early Childhood. Sensors 2025, 25, 2251. https://doi.org/10.3390/s25072251
Zhao P, Ma K, Wang T, Liu Z. Developmental Trends in Postural Adjustments During Reaching in Early Childhood. Sensors. 2025; 25(7):2251. https://doi.org/10.3390/s25072251
Chicago/Turabian StyleZhao, Panchao, Kai Ma, Tianying Wang, and Ziqing Liu. 2025. "Developmental Trends in Postural Adjustments During Reaching in Early Childhood" Sensors 25, no. 7: 2251. https://doi.org/10.3390/s25072251
APA StyleZhao, P., Ma, K., Wang, T., & Liu, Z. (2025). Developmental Trends in Postural Adjustments During Reaching in Early Childhood. Sensors, 25(7), 2251. https://doi.org/10.3390/s25072251