A Non-Contact Privacy Protection Bed Angle Estimation Method Based on LiDAR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Point Cloud Scene Acquisition and Data Preprocessing
2.2. Transformation of Camera Coordinate System to World Coordinate System
3. Results
3.1. The Experiment Setup
3.2. The Training Process
3.3. The Training Result
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Mehrotra, S. Bed angle detection in hospital room using Microsoft Kinect V2. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 277–280. [Google Scholar] [CrossRef]
- HAI Data|CDC. 3 March 2023. Available online: https://www.cdc.gov/healthcare-associated-infections/php/data/?CDC_AAref_Val=https://www.cdc.gov/hai/data/index.html (accessed on 20 June 2023).
- Modi, A.R.; Kovacs, C.S. Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention. Clevel. Clin. J. Med. 2020, 87, 633–639. [Google Scholar] [CrossRef]
- Vallecoccia, M.S.; Dominedò, C.; Cutuli, S.L.; Martin-Loeches, I.; Torres, A.; De Pascale, G. Is ventilated hospital-acquired pneumonia a worse entity than ventilator-associated pneumonia? Eur. Respir. Rev. 2020, 29, 200023. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratala, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Xu, W.; Huang, M.-C.; Alshurafa, N.; Sarrafzadeh, M.; Raut, N.; Yadegar, B. A dense pressure sensitive bedsheet design for unobtrusive sleep posture monitoring. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom), San Diego, CA, USA, 18–22 March 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Kittipanya-Ngam, P.; Guat, O.S.; Lung, E.H. Bed detection for monitoring system in hospital wards. In Proceedings of the 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 5887–5890. [Google Scholar] [CrossRef]
- Li, Y.; Berkowitz, L.; Noskin, G.; Mehrotra, S. Detection of patient’s bed statuses in 3D using a Microsoft Kinect. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 5900–5903. [Google Scholar] [CrossRef]
- Katayama, H.; Mizomoto, T.; Rizk, H.; Yamaguchi, H. You work we care: Sitting posture assessment based on point cloud data. In Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops), Washington, DC, USA, 17–21 March 2025; IEEE: Piscataway, NJ, USA, 2022; pp. 121–123. [Google Scholar]
- Xu, Y.; Jung, C.; Chang, Y. Head pose estimation using deep neural networks and 3d point clouds. Pattern Recognit. 2022, 121, 108210. [Google Scholar] [CrossRef]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for Point-Cloud Shape Detection. Comput. Graph. Forum 2010, 26, 214–226. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhou, X.; Huang, Q.; Sun, X.; Xue, X.; Wei, Y. Towards 3d human pose estimation in the wild: A weakly-supervised approach. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 398–407. [Google Scholar]
- Sun, X.; Xiao, B.; Wei, F.; Liang, S.; Wei, Y. Integral human pose regression. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 529–545. [Google Scholar]
- Moon, G.; Chang, J.Y.; Lee, K.M. V2v-posenet: Voxel-to-voxel prediction network for accurate 3d hand and human pose estimation from a single depth map. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5079–5088. [Google Scholar]
- Xiong, F.; Zhang, B.; Xiao, Y.; Cao, Z.; Yu, T.; Zhou, J.T.; Yuan, J. A2j: Anchor-to-joint regression network for 3d articulated pose estimation from a single depth image. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 793–802. [Google Scholar]
Degree | Towards [13] | Integral [14] | V2V [15] | GAST | A2J [16] | Ours |
---|---|---|---|---|---|---|
10° | 4.03° | 3.65° | 2.98° | 2.42° | 2.37° | 2.63° |
15° | 2.37° | 2.43° | 1.42° | 1.36° | 1.19° | 1.27° |
20° | 2.81° | 3.01° | 1.59° | 1.75° | 2.01° | 1.30° |
25° | 3.04° | 3.74° | 3.07° | 3.13° | 3.19° | 2.94° |
30° | 3.29° | 3.95° | 2.99° | 2.86° | 3.01° | 2.75° |
35° | 4.37° | 4.63° | 3.38° | 3.39° | 3.26° | 3.63° |
40° | 4.81° | 5.12° | 4.19° | 4.32° | 4.24° | 3.81° |
45° | 5.19° | 5.32° | 4.20° | 4.97° | 4.32° | 4.18° |
Total | 3.73° | 3.98° | 2.97° | 3.02° | 2.94° | 2.81° |
Time | 27 ms | 31 ms | 68 ms | 56 ms | 32 ms | 39 ms |
Bed Angle | 15 | 20 | 25 | 30 | 35 | 40 | 45 | |
---|---|---|---|---|---|---|---|---|
Bed barrier Up | Result | 13.8 | 17.6 | 23.6 | 28.5 | 33.9 | 38.2 | 41.4 |
Error | 1.1 | 2.3 | 1.3 | 1.4 | 1.0 | 1.7 | 3.5 | |
Bed barrier Down | Result | 12.7 | 17.3 | 26.1 | 31.1 | 33.6 | 43.3 | 40.2 |
Error | 2.2 | 2.6 | 0.8 | 1.1 | 1.5 | 3.3 | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, Y.; Li, Y.; Zhang, H.; Xin, L.; Zhao, C.; Xu, Z. A Non-Contact Privacy Protection Bed Angle Estimation Method Based on LiDAR. Sensors 2025, 25, 2226. https://doi.org/10.3390/s25072226
Ju Y, Li Y, Zhang H, Xin L, Zhao C, Xu Z. A Non-Contact Privacy Protection Bed Angle Estimation Method Based on LiDAR. Sensors. 2025; 25(7):2226. https://doi.org/10.3390/s25072226
Chicago/Turabian StyleJu, Yezhao, Yuanji Li, Haiyang Zhang, Le Xin, Changming Zhao, and Ziyi Xu. 2025. "A Non-Contact Privacy Protection Bed Angle Estimation Method Based on LiDAR" Sensors 25, no. 7: 2226. https://doi.org/10.3390/s25072226
APA StyleJu, Y., Li, Y., Zhang, H., Xin, L., Zhao, C., & Xu, Z. (2025). A Non-Contact Privacy Protection Bed Angle Estimation Method Based on LiDAR. Sensors, 25(7), 2226. https://doi.org/10.3390/s25072226