Electrochemical Behavior of Some Cinchona Alkaloids Using Screen-Printed Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instrumentation and Apparatus
2.3. Procedures
2.3.1. Solutions
2.3.2. Electrode Preparation
2.3.3. Differential Pulse Voltammetry Measurements
2.3.4. Data Treatment
3. Results and Discussion
3.1. Preliminary Studies
3.2. Electrode Testing
3.3. Selectivity
3.4. Application of the Sensor: Determination of Cinchonine in Urine and Serum
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SPE | Screen–printed electrode |
SP-Pt/CN | Screen–printed platinum electrode coated with cinchonine |
DPV | Differential pulse voltammetry |
RSD | Relative standard deviation |
References
- Beitollahi, H.; Mohammadi, S.Z.; Safaei, M.; Tajik, S. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: A review. Anal. Methods 2020, 12, 1547–1560. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Wu, G.; Xu, C.; Wu, J.; Zhanga, X.; Liu, J. Applications of electrochemical biosensors based on functional antibody-modified screen-printed electrodes: A review. Anal. Methods 2022, 14, 7–16. [Google Scholar] [CrossRef]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Banks, C.E. Electroanalytical Overview: Screen-Printed Electrochemical Sensing Platforms. ChemElectroChem 2024, 11, e202400370. [Google Scholar] [CrossRef]
- Kelíšková, P.; Matvieiev, O.; Janíková, L.; Šelešovská, R. Recent advances in the use of screen-printed electrodes in drug analysis: A review. Curr. Opin. Electrochem. 2023, 42, 101408. [Google Scholar] [CrossRef]
- Bard, A.J. Chemical modification of electrodes. J. Chem. Educ. 1983, 60, 302–304. [Google Scholar] [CrossRef]
- Edwards, G.A.; Bergren, A.J.; Porter, M.D. Chemically Modified Electrodes. Handb. Electrochem. 2007, 8, 295–327. [Google Scholar] [CrossRef]
- Murray, R.W.; Ewing, A.G.; Durst, R.A. Chemically modified electrodes. Molecular design for electroanalysis. Anal. Chem. 1987, 59, 379A–390A. [Google Scholar] [CrossRef]
- Durst, R.A.; Baumner, A.J.; Murray, R.W.; Buck, R.P.; Andrieux, C.P. Chemically Modified Electrodes: Recommended Terminology and Definitions, IUPAC. Pure Appl. Chem. 1997, 69, 1317–1323. [Google Scholar] [CrossRef]
- White, H.S.; Leddy, J.; Bard, A.J. Polymer films on electrodes. 8. Investigation of charge-transport mechanisms in Nafion polymer modified electrodes. J. Am. Chem. Soc. 1982, 104, 4811–4817. [Google Scholar] [CrossRef]
- Zen, J.-M.; Kumar, A.S.; Tsai, D.-M. Recent Updates of Chemically Modified Electrodes in Analytical Chemistry. Electroanalysis 2003, 15, 1073–1087. [Google Scholar] [CrossRef]
- Perez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M.; Arino, C.; Esteban, M. Mercury Films on Commercial Carbon Screen-Printed Devices for the Analysis of Heavy Metal Ions: A Critical Evaluation. Electroanalysis 2015, 27, 1345–1349. [Google Scholar] [CrossRef]
- Josypcuk, B.; Tvorynska, S. Screen-printed electrodes covered by mercury film or meniscus. Electrochim. Acta 2025, 513, 145565. [Google Scholar] [CrossRef]
- Siria, J.W.; Baldwin, R.P. Adsorption Pre-Concentration and Analysis of Dopamine at Platinum Electrode Surfaces. Anal. Lett. 1980, 13, 577–588. [Google Scholar] [CrossRef]
- Trasatti, S. Adsorption of organic substances at electrodes: Recent advances. Electrochim. Acta 1992, 37, 2137–2144. [Google Scholar] [CrossRef]
- Mittal, M.; Sardar, S.; Jana, A.E. Nanofabrication techniques for semiconductor chemical sensors. In Handbook of Nanomaterials for Sensing Applications; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 119–137. [Google Scholar] [CrossRef]
- Ayala, M.C.; López, L.L.; Jaramillo-Botero, A.; Valencia, D. Electrochemical modified electrode with bismuth film for ultrasensitive determination of aluminum (III). J. Electroanal. Chem. 2022, 919, 116552. [Google Scholar] [CrossRef]
- Parveen, S.; Maurya, N.; Meena, A.; Luqman, S. Cinchonine: A Versatile Pharmacological Agent Derived from Natural Cinchona Alkaloids. Curr. Top. Med. Chem. 2024, 24, 343–363. [Google Scholar] [CrossRef]
- Tracy, J.W.; Webster, J.L. Drugs used in the chemotherapy of protozoal infections. In The Pharmacological Basis of Therapeutics, 9th ed.; Hardman, J.G., Limbird, L.E., Molino, V.P.B., Ruddon, R.W., Gilman, A.G., Eds.; The McGraw Hill: New York, NY, USA, 1996; pp. 800–808. [Google Scholar]
- Sullivan, D.J. Cinchona Alkaloids: Quinine and Quinidine. In Treatment and Prevention of Malaria; Springer Basel AG.: Baltimore, MD, USA, 2012; Volume 41, pp. 45–68. [Google Scholar] [CrossRef]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10 (Suppl. S1), S4. [Google Scholar] [CrossRef]
- Levy, S.; Azoulay, S. Stories About the Origin of Quinquina and Quinidine. J. Cardiovasc. Electrophysiol. 1994, 5, 635–636. [Google Scholar] [CrossRef]
- Genne, P.; Duchamp, O.; Solary, E.; Pinard, D.; Belon, J.P.; Dimanche-Boitrel, M.T.; Chauffert, B. Comparative effects of quinine and cinchonine in reversing multidrug resistance on human leukemic cell line K562/ADM. Leukemia 1994, 8, 160–164. [Google Scholar] [PubMed]
- Shah, B.H.; Nawaz, Z.; Virani, S.S.; Ali, I.Q.; Saeed, S.A.; Gilani, A.H. The inhibitory effect of cinchonine on human platelet aggregation due to blockade of calcium influx. Biochem. Pharmacol. 1998, 56, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Wang, X.; Wu, J.; Li, Y.; Li, C.; Qiao, X.; Fan, L.; Chen, Y.; Zhu, H.; Zhang, Z.; et al. Cinchonine and cinchonidine alleviate cisplatin-induced ototoxicity by regulating PI3K-AKT signaling. CNS Neurosci Ther. 2024, 30, e14403. [Google Scholar] [CrossRef] [PubMed]
- Genne, P.; Ducham, O.; Solary, E.; Magnette, J.; Belon, J.P.; Chauffert, B. Cinchonine per os: Efficient circumvention of P-glycoprotein-mediated multidrug resistance. Anticancer Drug Des. 1995, 10, 103–118. [Google Scholar] [PubMed]
- Johnson, C.C.; Poe, C.F. Toxicity of Some Cinchona Alkaloids. Acta Pharmacol. 1948, 4, 265–274. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 8th ed.; Cinchona bark; Council of Europe: Strasbourg, France, 2016; pp. 1208–1209. [Google Scholar]
- Grant, H.S.; Jones, H.J. Spectrophotometric Determination of Cinchona Alkaloids. Anal. Chem. 1950, 22, 679–681. [Google Scholar] [CrossRef]
- Murauer, A.; Ganzera, M. Quantitative determination of major alkaloids in Cinchona bark by Supercritical Fluid Chromatography. J. Chromatogr. A 2018, 1554, 117–122. [Google Scholar] [CrossRef]
- Holmfred, E.; Cornett, C.; Maldonado, C.; Rønsted, N.; Honoré Hansen, S. An Optimised Method for Routine Separation and Quantification of Major Alkaloids in Cortex Cinchona by HPLC Coupled with UV and Fluorescence Detection. Phytochem. Anal. 2017, 28, 374–380. [Google Scholar] [CrossRef]
- Horie, M.; Oishi, M.; Ishikawa, F.; Shindo, T.; Yasui, A.; Ogino, S.; Ito, K. Liquid Chromatographic Analysis of Cinchona Alkaloids in Beverages. J. AOAC Int. 2006, 89, 1042–1047. [Google Scholar] [CrossRef]
- Yin, F.; Xu, X. Construction and Analytical Application of a Novel Ion-Selective Capacitive Sensor for Determination of Cinchonine. Anal. Lett. 2004, 37, 3129–3147. [Google Scholar] [CrossRef]
- Hu, W.; Wu, N.; Li, D.; Yang, Y.; Qie, S.; Su, S.; Xu, R.; Li, W.; Hu, M. The fluorescence distinction of chiral enantiomers: A Zn coordination polymer sensor for the detection of cinchonine and cinchonidine. J. Mater. Chem. C 2025, 13, 592–599. [Google Scholar] [CrossRef]
- Dushna, O.; Dubenska, L.; Marton, M.; Hatala, M.; Vojs, M. Sensitive and selective voltammetric method for determination of quinoline alkaloid, quinine in soft drinks and urine by applying a boron-doped diamond electrode. Microchem. J. 2023, 191, 108839. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Yang, H.-F.; Liu, Z.-M.; Liu, Y.-L.; Shen, G.-L.; Yu, R.-Q. Electrochemical sensor for cinchonine based on a competitive host–guest complexation. Anal. Chim. Acta 2005, 528, 135–142. [Google Scholar] [CrossRef]
- Prideaux, E.B.R.; Winfield, F.T. The determination of quinine, cinchonine and cinchonidine with the quinhydrone electrode, and the choice of end-points in alkaloidal titrations. Analyst 1930, 55, 561–565. [Google Scholar] [CrossRef]
- Yuan, J.-B.; Tan, Y.-G.; Nie, L.-H.; Yao, S.-Z. Piezoelectric quartz crystal sensors based on ion-pair complexes for the determination of cinchonine in human serum and urine. Anal. Chim. Acta 2002, 454, 65–74. [Google Scholar] [CrossRef]
- Blaser, H.U.; Jalett, H.P.; Monti, D.M.; Reber, J.F.; Wehrli, J.T. Modified Heterogeneous Platinum Catalysts for the Enantioselective Hydrogenation of α-Ketoesters. Stud. Surf. Sci. Catal. 1998, 41, 153–163. [Google Scholar] [CrossRef]
- Ma, Z.; Zaera, F. Competitive Chemisorption between Pairs of Cinchona Alkaloids and Related Compounds from Solution onto Platinum Surfaces. J. Am. Chem. Soc. 2006, 128, 16414–16415. [Google Scholar] [CrossRef]
- Fietkau, N.; Bussar, R.; Baltruschat, H. The stability of adsorbed quinoline and cinchonine on poly- and monocrystalline platinum surfaces. Electrochim. Acta 2006, 51, 5626–5635. [Google Scholar] [CrossRef]
- Bakos, I.; Szabo, S.; Bartok, M.; Kalman, E. Adsorption of cinchonidine on platinum: An electrochemical study. J. Electroanal. Chem. 2002, 532, 113–119. [Google Scholar] [CrossRef]
- Ma, Z.; Lee, I.; Zaera, F. Factors Controlling Adsorption Equilibria from Solution onto Solid Surfaces: The Uptake of Cinchona Alkaloids on Platinum Surfaces. J. Am. Chem. Soc. 2007, 129, 16083–16090. [Google Scholar] [CrossRef]
- Hariyanti, H.; Kurniati, N.F.; Sumirtapura, Y.C.; Mauludin, R. Development and validation of an analytical method for the determination of nanostructured lipid carrier’s cinchonine used direct method modified by liquid-liquid extraction using high-performance liquid chromatography. J. Res Pharm. 2023, 27, 913–923. [Google Scholar] [CrossRef]
- Brankovic, S.R. Electrochemical Deposition as Surface Controlled Phenomenon: Fundamentals and Applications. J. Electrochem. Soc. 2016, 163, Y21. [Google Scholar] [CrossRef]
- Ma, Z.; Zaera, F. Role of the Solvent in the Adsorption-Desorption Equilibrium of Cinchona Alkaloids Between Solution and a Platinum Surface: Correlations among Solvent Polarity, Cinchona Solubility, and Catalytic Performance. J. Phys. Chem. B 2005, 109, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Long, G.L.; Winefordner, J.D. Limit of detection: A closer look at the IUPAC detection. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar] [CrossRef]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guidelines for single laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- Exner, C.; Pfaltz, A.; Studer, M.; Blaser, H.-U. Heterogeneous Enantioselective Hydrogenation of Activated Ketones Catalyzed by Modified Pt-Catalysts: A Systematic Structure-Selectivity Study. Adv. Synth. Catal. 2003, 345, 1253–1260. [Google Scholar] [CrossRef]
- Halli, P.; Heikkinen, J.J.; Elomaa, H.; Wilson, B.J.; Jokinen, V.; Yliniemi, K.; Franssila, S.; Lundström, M. Platinum Recovery from Industrial Process Solutions by Electrodeposition–Redox Replacement. ACS Sustain. Chem. Eng. 2018, 6, 14631–14640. [Google Scholar] [CrossRef]
- Posada, J.O.G.; Hall, P.J. Controlling hydrogen evolution on electrodes. Int. J. Hydrog. Energy 2016, 41, 20807–20817. [Google Scholar] [CrossRef]
- Ma, F.; Lennox, R.B. Potential-Assisted Deposition of Alkanethiols on Au: Controlled Preparation of Single- and Mixed-Component SAMs. Langmuir 2000, 16, 6188–6190. [Google Scholar] [CrossRef]
- Bockris, J.O.M.; Koch, D.F.A. Comparative rates of the electrolytic evolution of hydrogen on iron, tungsten, and platinum. J. Phys. Chem. 1961, 65, 1941–1948. [Google Scholar] [CrossRef]
- Chunga, C.-K.; Chang, W.-T. Handbook of Manufacturing Engineering and Technology; Springer: London, UK, 2013. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley and Sons: New York, NY, USA, 2001. [Google Scholar]
- Kissinger, P.T.; Heineman, W.R. Laboratory Techniques in Electroanalytical Chemistry, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 1996; ISBN 0-8247-9445-1. [Google Scholar]
- Moosavi, S.M.; Ghassabian, S. Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability. In Calibration and Validation of Analytical Methods—A Sampling of Current Approaches; Mark, T., Ed.; IntechOpen Limited: London, UK, 2018; Chapter 6; pp. 109–127. [Google Scholar] [CrossRef]
- Brodie, B.B.; Baer, J.E.; Craig, L.C. Metabolic products of the cinchona alkaloids in human urine. J. Biol. Chem. 1951, 188, 567–581. [Google Scholar] [CrossRef]
- Isidorov, V.A. GC-MS of Biologically and Environmentally Significant Organic Compounds: TMS Derivatives; MS spectrum of Cinchonine, monoTMS; John Wiley & Sons: Hoboken, NJ, USA, 2020; p. 481. [Google Scholar]
Deposition Time, s | Deposition Temperature, °C | |||
---|---|---|---|---|
5 | 10 | 15 | 20 | |
30 | 2.7 | 1.6 | 1.9 | 2.7 |
60 | 2.3 | 1.1 | 2.7 | 3.5 |
90 | 3.5 | 2.6 | 3.5 | 5.2 |
120 | 4.5 | 3.3 | 5.1 | 6.4 |
Other Methods | Limit of Detection (LOD) | Limit of Quantification (LOQ) | Reference |
---|---|---|---|
Quinydrone electrode | 588 mg L−1 | n.r. | [37] |
Spectrophotometry | 10 mg L−1 | n.r. | [29] |
HPLC-UV | 2 mg L−1 | n.r. | [32] |
Supercritical fluid chromatography | 0.6 mg L−1 | 1.9 mg L−1 | [30] |
Glassy carbon electrode modified with β-CD immobilized | 0.6 mg L−1 | n.r. | [36] |
Fluorescence sensor based on a Zn coordination polymer | 129 μg L−1 | n.r. | [34] |
Gold electrode modified with ion-pair | 29.4 μg L−1 | n.r. | [33] |
complex of cinchonine–picrolonate | |||
Sensor modified with cinchonine-monotetraphenylborate-PVC | 11.8 μg L−1 | n.r. | [38] |
HPLC coupled with UV and fluorescence detection | n.r. | 5 μg L−1 | [31] |
SPE-Pt | 5.2 μg L−1 | 17.5 μg L−1 | This work |
SPE-Pt/CN | 0.6 μg L−1 | 1.8 μg L−1 | This work |
Interfering Substances | Concentration Ratio, [CN]:[Interferent] | ||
---|---|---|---|
1:0.1 | 1:1 | 1:10 | |
Recovery, % | |||
Urea | 99.8 | 105.2 | 106.3 |
Creatinine | 102.1 | 98.9 | 100.0 |
Caffeine | 100.2 | 100.5 | 99.8 |
Glucose | 98.7 | 100.2 | 101.3 |
Cinchonidine | 100.6 | 98.6 | 92.7 |
Quinine | 102.1 | 95.6 | 91.8 |
Quinidine | 109.6 | High interference | High interference |
[CN]Added, μg L−1 | Urine | Serum | ||
---|---|---|---|---|
Found, μg L−1 | Recovery, % | Found, μg L−1 | Recovery, % | |
1.99 | 2.15 | 108.0 | 1.93 | 97.0 |
3.96 | 3.93 | 99.2 | 4.18 | 105.5 |
9.76 | 10.12 | 103.7 | 9.93 | 101.8 |
19.05 | 19.77 | 103.8 | 19.00 | 99.8 |
36.36 | 36.23 | 99.6 | 36.70 | 100.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, T.; Palombi, L. Electrochemical Behavior of Some Cinchona Alkaloids Using Screen-Printed Electrodes. Sensors 2025, 25, 2216. https://doi.org/10.3390/s25072216
Caruso T, Palombi L. Electrochemical Behavior of Some Cinchona Alkaloids Using Screen-Printed Electrodes. Sensors. 2025; 25(7):2216. https://doi.org/10.3390/s25072216
Chicago/Turabian StyleCaruso, Tonino, and Laura Palombi. 2025. "Electrochemical Behavior of Some Cinchona Alkaloids Using Screen-Printed Electrodes" Sensors 25, no. 7: 2216. https://doi.org/10.3390/s25072216
APA StyleCaruso, T., & Palombi, L. (2025). Electrochemical Behavior of Some Cinchona Alkaloids Using Screen-Printed Electrodes. Sensors, 25(7), 2216. https://doi.org/10.3390/s25072216