A Fast and Low-Impact Embedded Orientation Correction Algorithm for Hand Gesture Recognition Armbands
Abstract
:1. Introduction
- A new orientation estimation algorithm, consisting of a pre-operational calibration and an online correction phase, has been proposed;
- The algorithm can be adapted to different pre-existing databases without the need to introduce new hardware, conduct additional data acquisition campaigns, or re-train machine learning models;
- All the computations needed to run the algorithm (both calibration and correction) can be embedded into an MCU, making it versatile to be implemented in both software and firmware standalone routine code;
- The proposed calibration process lasts less than 1 and requires the subject to perform only two simple movements, making it quick and user-friendly;
- We customized and implemented the proposed algorithm for our HMI armband [28], testing it on 25 subjects and achieving a global classification accuracy of % with the device worn in arbitrary orientation, and also obtaining a minimal additional latency of and a power consumption increment of only 500 μW when introducing the algorithm.
2. Previous Work on Our sEMG-Based Armband
3. Algorithm Definition
3.1. Calibration Algorithm Formulation
- (A)
- Presence of a movement with an arrow-shaped activation profile, i.e., with a peak of activation in one of the sensing channels and reduced activity moving away from it.
- (B)
- Presence of a movement, distinct from that in condition A, featuring at least one activation peak located in a position that is neither the same as in condition A nor its opposite.
3.2. General Application Example
4. Algorithm Implementation and Validation
4.1. Calibration Algorithm Implementation
4.2. Orientation Correction During Online Classification
4.3. Experimental Validation
5. Results and Discussion
6. Comparison with SoA Works
7. Conclusions and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, S.; Kang, P.; Song, X.; Lo, B.P.; Shull, P.B. Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey. IEEE Rev. Biomed. Eng. 2022, 15, 85–102. [Google Scholar] [CrossRef]
- Yasen, M.; Jusoh, S. A systematic review on hand gesture recognition techniques, challenges and applications. PeerJ. Comput. Sci. 2019, 5, e218. [Google Scholar] [CrossRef] [PubMed]
- Phienthrakul, T. Armband Gesture Recognition on Electromyography Signal for Virtual Control. In Proceedings of the 2018 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 31 January–3 February 2018; pp. 149–153. [Google Scholar] [CrossRef]
- Visconti, P.; Gaetani, F.; Zappatore, G.; Primiceri, P. Technical Features and Functionalities of Myo Armband: An Overview on Related Literature and Advanced Applications of Myoelectric Armbands Mainly Focused on Arm Prostheses. Int. J. Smart Sens. Intell. Syst. 2018, 11, 1–25. [Google Scholar] [CrossRef]
- Singh, H.P.; Kumar, P. Developments in the human machine interface technologies and their applications: A review. J. Med Eng. Technol. 2021, 45, 552–573. [Google Scholar] [CrossRef]
- Hayashi, H.; Tsuji, T. Human–Machine Interfaces Based on Bioelectric Signals: A Narrative Review with a Novel System Proposal. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 1536–1544. [Google Scholar] [CrossRef]
- Zhou, H.; Alici, G. Non-Invasive Human-Machine Interface (HMI) Systems With Hybrid On-Body Sensors for Controlling Upper-Limb Prosthesis: A Review. IEEE Sens. J. 2022, 22, 10292–10307. [Google Scholar] [CrossRef]
- Vimos, V.; Benalcázar, M.; Oña, A.; Cruz, P. A Novel Technique for Improving the Robustness to Sensor Rotation in Hand Gesture Recognition Using sEMG. In Advances and Applications in Computer Science, Electronics and Industrial Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 226–243. [Google Scholar] [CrossRef]
- Merletti, R.; Botter, A.; Barone, U. Detection and Conditioning of Surface EMG Signals. In Surface Electromyography: Physiology, Engineering, and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; Chapter 3; pp. 1–37. [Google Scholar] [CrossRef]
- Zheng, M.; Crouch, M.S.; Eggleston, M.S. Surface Electromyography as a Natural Human–Machine Interface: A Review. IEEE Sens. J. 2022, 22, 9198–9214. [Google Scholar] [CrossRef]
- CTRL-labs at Reality Labs; Sussillo, D.; Kaifosh, P.; Reardon, T. A generic noninvasive neuromotor interface for human-computer interaction. bioRxiv 2024. [Google Scholar] [CrossRef]
- MindRove. Emg-Based Armband for Detecting Muscle Movements. Available online: https://mindrove.com/armband/ (accessed on 7 February 2025).
- OYMotion Technologies Co., Ltd. gForcePro+ EMG Armband. Available online: https://www.oymotion.com/en/product32/149 (accessed on 7 February 2025).
- Tomczyński, J.; Mańkowski, T.; Kaczmarek, P. Influence of sEMG electrode matrix configuration on hand gesture recognition performance. In Proceedings of the 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 20–22 September 2017; pp. 42–47. [Google Scholar] [CrossRef]
- Ergeneci, M.; Gokcesu, K.; Ertan, E.; Kosmas, P. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 68–79. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, L.; Qian, J.; Zhang, Z. Advanced Hand Gesture Prediction Robust to Electrode Shift with an Arbitrary Angle. Sensors 2020, 20, 1113. [Google Scholar] [CrossRef]
- Hargrove, L.; Englehart, K.; Hudgins, B. The effect of electrode displacements on pattern recognition based myoelectric control. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2203–2206. [Google Scholar] [CrossRef]
- Xu, H.; Xiong, A. Advances and Disturbances in sEMG-Based Intentions and Movements Recognition: A Review. IEEE Sens. J. 2021, 21, 13019–13028. [Google Scholar] [CrossRef]
- Hargrove, L.; Englehart, K.; Hudgins, B. A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control. Biomed. Signal Process. Control 2008, 3, 175–180. [Google Scholar] [CrossRef]
- Yang, W.; Yang, D.; Li, J.; Liu, Y.; Liu, H. EMG dataset augmentation approaches for improving the multi-DOF wrist movement regression accuracy and robustness. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 1268–1273. [Google Scholar] [CrossRef]
- Sun, T.; Libby, J.; Rizzo, J.; Atashzar, S.F. Deep Augmentation for Electrode Shift Compensation in Transient High-density sEMG: Towards Application in Neurorobotics. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 6148–6153. [Google Scholar] [CrossRef]
- Stival, F.; Michieletto, S.; De Agnoi, A.; Pagello, E. Toward a Better Robotic Hand Prosthesis Control: Using EMG and IMU Features for a Subject Independent Multi Joint Regression Model. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 185–192. [Google Scholar] [CrossRef]
- López, N.M.; di Sciascio, F.; Soria, C.M.; Valentinuzzi, M.E. Robust EMG sensing system based on data fusion for myoelectric control of a robotic arm. BioMedical. Eng. OnLine 2009, 8, 5. [Google Scholar] [CrossRef]
- Fougner, A.; Scheme, E.; Chan, A.D.C.; Englehart, K.; Stavdahl, O. A multi-modal approach for hand motion classification using surface EMG and accelerometers. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 4247–4250. [Google Scholar] [CrossRef]
- He, J.; Sheng, X.; Zhu, X.; Jiang, N. Electrode Density Affects the Robustness of Myoelectric Pattern Recognition System With and Without Electrode Shift. IEEE J. Biomed. Health Inform. 2019, 23, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Raurale, S.A.; McAllister, J.; del Rincon, J.M. Real-Time Embedded EMG Signal Analysis for Wrist-Hand Pose Identification. IEEE Trans. Signal Process. 2020, 68, 2713–2723. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Yu, H.; Yang, X.; Lu, W.; Liu, H. Wearing-independent hand gesture recognition method based on EMG armband. Pers. Ubiquitous Comput. 2018, 22, 511–524. [Google Scholar] [CrossRef]
- Mongardi, A.; Rossi, F.; Prestia, A.; Motto Ros, P.; Ruo Roch, M.; Martina, M.; Demarchi, D. Hand Gestures Recognition for Human-Machine Interfaces: A Low-Power Bio-Inspired Armband. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 1–18. [Google Scholar] [CrossRef]
- Università degli Studi di Torino. Comitato di Bioetica dell’Ateneo. Available online: https://www.unito.it/ricerca/strutture-e-organi-la-ricerca/comitato-di-bioetica-dellateneo (accessed on 7 February 2025).
- Rossi, F.; Mongardi, A.; Motto Ros, P.; Ruo Roch, M.; Martina, M.; Demarchi, D. Tutorial: A Versatile Bio-Inspired System for Processing and Transmission of Muscular Information. IEEE Sens. J. 2021, 21, 22285–22303. [Google Scholar] [CrossRef]
- Micro, A. Apollo3 Blue. Available online: https://ambiq.com/apollo3-blue/ (accessed on 18 November 2024).
- Cellevia Batteries. Polymer Lithium-Ion Battery. Available online: https://www.tme.eu/Document/040b757b80bd482e7b6e1bb3f31fe8a6/cel0062.pdf (accessed on 7 February 2025).
- Crepaldi, M.; Paleari, M.; Bonanno, A.; Sanginario, A.; Ariano, P.; Tran, D.H.; Demarchi, D. A quasi-digital radio system for muscle force transmission based on event-driven IR-UWB. In Proceedings of the 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), Hsinchu, Taiwan, 28–30 November 2012; pp. 116–119. [Google Scholar] [CrossRef]
- Sapienza, S.; Crepaldi, M.; Motto Ros, P.; Bonanno, A.; Demarchi, D. On Integration and Validation of a Very Low Complexity ATC UWB System for Muscle Force Transmission. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 497–506. [Google Scholar] [CrossRef]
- Vitale, A.; Donati, E.; Germann, R.; Magno, M. Neuromorphic Edge Computing for Biomedical Applications: Gesture Classification Using EMG Signals. IEEE Sens. J. 2022, 22, 19490–19499. [Google Scholar] [CrossRef]
- Rani, P.; Pancholi, S.; Shaw, V.; Atzori, M.; Kumar, S. Enhancing Gesture Classification Using Active EMG Band and Advanced Feature Extraction Technique. IEEE Sens. J. 2024, 24, 5246–5255. [Google Scholar] [CrossRef]
- Tepe, C.; Demir, M. Real-Time Classification of EMG Myo Armband Data Using Support Vector Machine. IRBM 2022, 43, 300–308. [Google Scholar] [CrossRef]
- Botros, F.S.; Phinyomark, A.; Scheme, E.J. Electromyography-Based Gesture Recognition: Is It Time to Change Focus From the Forearm to the Wrist? IEEE Trans. Ind. Inform. 2022, 18, 174–184. [Google Scholar] [CrossRef]
- Atzori, M.; Gijsberts, A.; Castellini, C.; Caputo, B.; Hager, A.G.M.; Elsig, S.; Giatsidis, G.; Bassetto, F.; Müller, H. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 2014, 1, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pizzolato, S.; Tagliapietra, L.; Cognolato, M.; Reggiani, M.; Müller, H.; Atzori, M. Comparison of six electromyography acquisition setups on hand movement classification tasks. PLoS ONE 2017, 12, 1–17. [Google Scholar] [CrossRef]
- Barona López, L.I.; Valdivieso Caraguay, A.L.; Vimos, V.H.; Zea, J.A.; Vásconez, J.P.; Álvarez, M.; Benalcázar, M.E. An Energy-Based Method for Orientation Correction of EMG Bracelet Sensors in Hand Gesture Recognition Systems. Sensors 2020, 20, 6327. [Google Scholar] [CrossRef]
- Boschmann, A.; Platzner, M. Reducing classification accuracy degradation of pattern recognition based myoelectric control caused by electrode shift using a high density electrode array. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 4324–4327. [Google Scholar] [CrossRef]
- Chamberland, F.; Buteau, E.; Tam, S.; Campbell, E.; Mortazavi, A.; Scheme, E.; Fortier, P.; Boukadoum, M.; Campeau-Lecours, A.; Gosselin, B. Novel Wearable HD-EMG Sensor With Shift-Robust Gesture Recognition Using Deep Learning. IEEE Trans. Biomed. Circuits Syst. 2023, 17, 968–984. [Google Scholar] [CrossRef]
- Ottobock SE & Co., KGaA. OttoBock. Available online: https://www.ottobock.com/ (accessed on 7 February 2025).
- Delsys, Inc. Delsys. Available online: https://www.delsys.com/ (accessed on 7 February 2025).
- Cometa srl. Cometa. Available online: https://www.cometasystems.com/ (accessed on 7 February 2025).
- Ben Haj Amor, A.; El Ghoul, O.; Jemni, M. Sign language recognition using the electromyographic signal: A systematic literature review. Sensors 2023, 23, 8343. [Google Scholar] [CrossRef]
- Vásconez, J.P.; Barona López, L.I.; Valdivieso Caraguay, Á.L.; Benalcázar, M.E. Hand gesture recognition using EMG-IMU signals and deep q-networks. Sensors 2022, 22, 9613. [Google Scholar] [CrossRef]
- Freitas, M.L.B.; Mendes, J.J.A., Jr.; Dias, T.S.; Siqueira, H.V.; Stevan, S.L., Jr. Surgical instrument signaling gesture recognition using surface electromyography signals. Sensors 2023, 23, 6233. [Google Scholar] [CrossRef]
- Pan, T.Y.; Tsai, W.L.; Chang, C.Y.; Yeh, C.W.; Hu, M.C. A Hierarchical Hand Gesture Recognition Framework for Sports Referee Training-Based EMG and Accelerometer Sensors. IEEE Trans. Cybern. 2022, 52, 3172–3183. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.E.; Shehata, A.W.; Dawson, M.R.; Scheme, E.; Hebert, J.S.; Pilarski, P.M. Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control. IEEE Trans. Biomed. Eng. 2022, 69, 2243–2255. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J. Surface electromyography: Detection and recording. DelSys Inc. 2002, 10, 1–10. [Google Scholar]
- Phinyomark, A.; Scheme, E. A feature extraction issue for myoelectric control based on wearable EMG sensors. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Republic of Korea, 12–14 March 2018; pp. 1–6. [Google Scholar]
- Amazon Web Services, Inc. FreeRTOS: Real-Time Operating System for Microcontrollers. Available online: https://www.freertos.org/ (accessed on 7 February 2025).
- Arm®. CMSIS Library. Available online: https://developer.arm.com/tools-and-software/embedded/cmsis (accessed on 7 February 2025).
- Mongardi, A.; Rossi, F.; Prestia, A.; Demarchi, D.; Motto Ros, P. Live Demonstration: A Wearable Armband for Real-Time Control of Multi-DOF Robotic Actuators. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; p. 1. [Google Scholar]
- Gao, B.; Wei, C.; Ma, H.; Yang, S.; Ma, X.; Zhang, S. Real-Time Evaluation of the Signal Processing of sEMG Used in Limb Exoskeleton Rehabilitation System. Appl. Bionics Biomech. 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Tektronix. Keithley DMM7510 7.5 Digit Graphical Sampling Multimeter. Available online: https://www.tek.com/en/products/keithley/digital-multimeter/dmm7510 (accessed on 7 February 2025).
- Mendez, V.; Pollina, L.; Artoni, F.; Micera, S. Deep learning with convolutional neural network for proportional control of finger movements from surface EMG recordings. In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtual, 4–6 May 2021; pp. 1074–1078. [Google Scholar]
- Zhang, S.; Fang, Y.; Wan, J.; Jiang, G.; Li, G. Transfer Learning Enhanced Cross-Subject Hand Gesture Recognition with sEMG. J. Med. Biol. Eng. 2023, 43, 672–688. [Google Scholar] [CrossRef]
Name | Subjects | Devices | Available Data |
---|---|---|---|
DB1 | 27 healthy | 8 OttoBock | RMS |
DB2 | 40 healthy | 8 Delsys | sEMG |
DB3 | 8 people with amputations | 8 Delsys | sEMG |
DB4 | 10 healthy | 8 Cometa | sEMG |
DB5 | 10 healthy | 1 Myo armband (8 channels) | sEMG |
Ours | 20 healthy | 1 custom armband (7 channels) | ATC |
Name | Condition A | Condition B | Dch | MAEfw | MAEbw | flagbw |
---|---|---|---|---|---|---|
DB1 | WE | HG | 3 | 41.9 | 30.1 | 1 |
DB2 | WE | UD | 1 | 26.4 | 13.1 | 1 |
DB3 | HG | WF | 2 | 15.3 | 32.0 | 0 |
DB4 | WE | UD | 1 | 16.4 | 23.1 | 0 |
DB5 | WE | HG | 2 | 19.0 | 38.9 | 0 |
Ours | WE | UD | 1 | 7.6 | 2.1 | 1 |
Work | Year | # Channels | # Gestures | Classifier Type | Device | Embedded Algorithm | DOFs Handled | Online Latency | # Tested Subjects | Accuracy Increase |
---|---|---|---|---|---|---|---|---|---|---|
[16] | 2020 | 8 | 6 | ANN | Myo armband | ✗ | 1 | 338 | 10 | % → % ⋆ |
[41] | 2020 | 8 | 6 | SVM 1 | Myo armband | ✗ | 1 | Offline | 306 | % → % ⋆ % → % ⋄ |
[26] | 2020 | 8 | 9 | ANN | Myo armband | ✓ | 1 | Offline | 10 | N.A. → % ⋄ |
[43] | 2023 | 64 | 6 | CNN 2 | Custom | ✗ | 1 | Offline | 12 | % → % ⋆ |
This | 2024 | 7 | 9 | ANN | Custom | ✓ | 1 & 3 | 182 | 25 | % → % ⋄ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mongardi, A.; Rossi, F.; Prestia, A.; Motto Ros, P.; Demarchi, D. A Fast and Low-Impact Embedded Orientation Correction Algorithm for Hand Gesture Recognition Armbands. Sensors 2025, 25, 2188. https://doi.org/10.3390/s25072188
Mongardi A, Rossi F, Prestia A, Motto Ros P, Demarchi D. A Fast and Low-Impact Embedded Orientation Correction Algorithm for Hand Gesture Recognition Armbands. Sensors. 2025; 25(7):2188. https://doi.org/10.3390/s25072188
Chicago/Turabian StyleMongardi, Andrea, Fabio Rossi, Andrea Prestia, Paolo Motto Ros, and Danilo Demarchi. 2025. "A Fast and Low-Impact Embedded Orientation Correction Algorithm for Hand Gesture Recognition Armbands" Sensors 25, no. 7: 2188. https://doi.org/10.3390/s25072188
APA StyleMongardi, A., Rossi, F., Prestia, A., Motto Ros, P., & Demarchi, D. (2025). A Fast and Low-Impact Embedded Orientation Correction Algorithm for Hand Gesture Recognition Armbands. Sensors, 25(7), 2188. https://doi.org/10.3390/s25072188