IDDNet: Infrared Object Detection Network Based on Multi-Scale Fusion Dehazing
Abstract
:1. Introduction
- A multi-scale fusion dehazing (MSFD) module is proposed, based on the atmospheric scattering model. It alternately processes features from different levels through multi-scale feature fusion, effectively removing haze interference while preserving the details and features of the objects.
- Based on MSFD, an infrared dehazing object detection network, IDDNet, is constructed. IDDNet integrates a bidirectional polarized self-attention mechanism, a weighted bidirectional feature pyramid network, and a multi-scale object detection layer.
- To address the issues of texture loss and high noise in infrared dehazing, this paper designs a dehazing loss function (DhLoss) that integrates joint perceptual loss, contrast loss, and smoothness loss. Additionally, a dehazing object detection loss function (DetLoss) is constructed by incorporating scale loss and location loss to enhance detection accuracy and robustness in complex backgrounds.
2. Related Works
2.1. Atmospheric Scattering Model
2.2. Detection Model
3. Materials and Methods
3.1. Multi-Scale Fusion Dehazing Module
3.1.1. GCCA Block
3.1.2. Loss Function of MSFD
3.1.3. ESA Block
3.2. Infrared Dehazing Object Detection Network
Algorithm 1. IDDNet Pseudo-Code |
|
1: for n = 1 to Nepochs do 2: for m = 1 to B do 3: //Stage1. Multi-scale Fusion Dehaze Model (MSFD) 4: Feature extraction: ← Maxout and DSConv 5: Feature fusion: ← Concat, Multi, Add, ESA and GCCA 6: Dehazing factor: ω ← ReLU, Sigmoid and ω 7: LDhLoss ← DhLoss (Ihaze, Idehaze) 8: Θdehaze ← Θdehaze ↔ η*∇ ( + + ) 9: //Stage2. Infrared Dehazing Detection Network (IDDNet) 10: BPSA ← (Channel-direction PA + Spatial-direction PA): 11: 12: 13: BPSA Fusion: 14: W-BiFPN feature fusion module: N1, N2, N3, H1, H2 and H3 15: Detection Head ← (N3, H1, H2 and H3) 16: LDetLoss ← (Idehaze, IGT)) 17: Θdetection ← Θdetection ↔ η*∇ ( + ) 18: end 19: end |
3.2.1. Weighted Bidirectional Feature Pyramid Network
3.2.2. Multi-Scale Object Detection Layers
3.2.3. Efficient Attention Mechanism
3.2.4. Loss Function for Infrared Dehazing Object Detection
3.3. Two-Stage Training Strategy
4. Results and Discussion
4.1. Experiment Introduction
4.1.1. Dataset
4.1.2. Experimental Environment and Training Strategies
4.1.3. Evaluation Indicators
4.2. Experiment Results
4.2.1. Comparative Experiments of MSFD
4.2.2. Ablation Experiments of MSFD
4.2.3. Comparative Experiments of IDDNet
4.2.4. Ablation Experiments of IDDNet
4.2.5. Generalization Experiment of IDDNet
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
T | Precision | Recall | AP50 | AP50:95 |
---|---|---|---|---|
0 | 0.891 | 0.822 | 0.834 | 0.549 |
50 | 0.887 | 0.814 | 0.829 | 0.542 |
100 | 0.893 | 0.819 | 0.833 | 0.547 |
150 | 0.897 | 0.820 | 0.837 | 0.544 |
200 | 0.894 | 0.824 | 0.839 | 0.551 |
250 | 0.707 | 0.699 | 0.678 | 0.445 |
300 | 0.654 | 0.677 | 0.620 | 0.427 |
References
- Jiang, C.; Ren, H.; Ye, X.; Zhu, J.; Zeng, H.; Nan, Y.; Sun, M.; Ren, X.; Huo, H. Object detection from UAV thermal infrared images and videos using YOLO models. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102912. [Google Scholar]
- Wang, W.; Li, Z.; Siddique, A. Infrared maritime small-target detection based on fusion gray gradient clutter suppression. Remote Sens. 2024, 16, 1255. [Google Scholar] [CrossRef]
- Hussain, M. Yolov1 to v8: Unveiling each variant–a comprehensive review of yolo. IEEE Access 2024, 12, 42816–42833. [Google Scholar]
- Razeghi, M.; Nguyen, B.-M. Advances in mid-infrared detection and imaging: A key issues review. Rep. Prog. Phys. 2014, 77, 082401. [Google Scholar] [PubMed]
- Fattal, R. Single image dehazing. ACM Trans. Graph. (TOG) 2008, 27, 1–9. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Tang, K.; Yang, J.; Wang, J. Investigating haze-relevant features in a learning framework for image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2995–3000. [Google Scholar]
- Zhu, Q.; Mai, J.; Shao, L. A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar]
- Berman, D.; Avidan, S. Non-local image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1674–1682. [Google Scholar]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar]
- Zhang, J.; Cao, Y.; Wang, Y.; Wen, C.; Chen, C.W. Fully point-wise convolutional neural network for modeling statistical regularities in natural images. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 984–992. [Google Scholar]
- Tan, R.T. Visibility in bad weather from a single image. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–8. [Google Scholar]
- Berman, D.; Treibitz, T.; Avidan, S. Air-light estimation using haze-lines. In Proceedings of the 2017 IEEE International Conference on Computational Photography (ICCP), Stanford, CA, USA, 12–14 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–9. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef]
- Li, W.; Li, F.; Miao, Z.; Tan, C.; Mu, J. Infrared Image Dehazing Based on Hierarchical Subdivided Superpixels and Information Completeness Priors. Infrared Millim. Waves J. 2022, 41, 930–940. [Google Scholar]
- Dong, Z.; Zheng, D.; Huang, Y.; Zeng, Z.; Xu, C.; Liao, T. A polarization-based image restoration method for both haze and underwater scattering environment. Sci. Rep. 2022, 12, 1836. [Google Scholar]
- Galdran, A. Image dehazing by artificial multiple-exposure image fusion. Signal Process. 2018, 149, 135–147. [Google Scholar]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. Aod-net: All-in-one dehazing network. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4770–4778. [Google Scholar]
- Ren, W.; Ma, L.; Zhang, J.; Pan, J.; Cao, X.; Liu, W.; Yang, M.-H. Gated fusion network for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3253–3261. [Google Scholar]
- Zhang, H.; Patel, V.M. Densely connected pyramid dehazing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3194–3203. [Google Scholar]
- Suárez, P.L.; Sappa, A.D.; Vintimilla, B.; Hammoud, R.I. Deep learning based single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1169–1176. [Google Scholar]
- Zhu, Z.; Wei, H.; Hu, G.; Li, Y.; Qi, G.; Mazur, N. A novel fast single image dehazing algorithm based on artificial multiexposure image fusion. IEEE Trans. Instrum. Meas. 2020, 70, 1–23. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Q.; Tong, X.; Atkinson, P.M. A deep learning model for incorporating temporal information in haze removal. Remote Sens. Environ. 2022, 274, 113012. [Google Scholar]
- Li, R.; Pan, J.; Li, Z.; Tang, J. Single image dehazing via conditional generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8202–8211. [Google Scholar]
- Liu, X.; Shi, Z.; Wu, Z.; Chen, J.; Zhai, G. Griddehazenet+: An enhanced multi-scale network with intra-task knowledge transfer for single image dehazing. IEEE Trans. Intell. Transp. Syst. 2022, 24, 870–884. [Google Scholar]
- Tang, H.; Li, Z.; Zhang, D.; He, S.; Tang, J. Divide-and-Conquer: Confluent Triple-Flow Network for RGB-T salient object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 47, 1958–1974. [Google Scholar]
- Ouyang, J.; Jin, P.; Wang, Q. Multimodal feature-guided pre-training for RGB-T perception. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 16041–16050. [Google Scholar]
- Wang, N.; Wang, Y.; Feng, Y.; Wei, Y. MDD-ShipNet: Math-data integrated defogging for fog-occlusion ship detection. IEEE Trans. Intell. Transp. Syst. 2024, 25, 15040–15052. [Google Scholar]
- Liu, W.; Ren, G.; Yu, R.; Guo, S.; Zhu, J.; Zhang, L. Image-adaptive YOLO for object detection in adverse weather conditions. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; pp. 1792–1800. [Google Scholar]
- Meng, X.; Liu, Y.; Fan, L.; Fan, J. YOLOv5s-Fog: An improved model based on YOLOv5s for object detection in foggy weather scenarios. Sensors 2023, 23, 5321. [Google Scholar] [CrossRef]
- McCartney, E.J. Optics of the Atmosphere: Scattering by Molecules and Particles; New York LLC: New York, NY, USA, 1976. [Google Scholar]
- Narasimhan, S.G.; Nayar, S.K. Vision and the atmosphere. Int. J. Comput. Vis. 2002, 48, 233–254. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, D. FAMED-Net: A fast and accurate multi-scale end-to-end dehazing network. IEEE Trans. Image Process. 2019, 29, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Pan, J. Physics-based feature dehazing networks. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XXX 16, 2020. Springer: Berlin/Heidelberg, Germany, 2020; pp. 188–204. [Google Scholar]
- Ju, M.; Zhang, D.; Wang, X. Single image dehazing via an improved atmospheric scattering model. Vis. Comput. 2017, 33, 1613–1625. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430 2021. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [PubMed]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: High quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1483–1498. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Hui, Z.; Gao, X.; Yang, Y.; Wang, X. Lightweight image super-resolution with information multi-distillation network. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2024–2032. [Google Scholar]
- Li, Z.; Liu, Y.; Chen, X.; Cai, H.; Gu, J.; Qiao, Y.; Dong, C. Blueprint separable residual network for efficient image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 833–843. [Google Scholar]
- Liu, J.; Zhang, W.; Tang, Y.; Tang, J.; Wu, G. Residual feature aggregation network for image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 2359–2368. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles. arXiv 2022, arXiv:2206.02424. [Google Scholar]
- Zhu, L.; Deng, Z.; Hu, X.; Fu, C.-W.; Xu, X.; Qin, J.; Heng, P.-A. Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 121–136. [Google Scholar]
- Sun, S.; Mo, B.; Xu, J.; Li, D.; Zhao, J.; Han, S. Multi-YOLOv8: An infrared moving small object detection model based on YOLOv8 for air vehicle. Neurocomputing 2024, 588, 127685. [Google Scholar]
- Xie, J.; Jin, X. Thermal Infrared Guided Color Image Dehazing. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 2465–2469. [Google Scholar]
- Zhang, M.; Zhang, R.; Yang, Y.; Bai, H.; Zhang, J.; Guo, J. ISNet: Shape matters for infrared small target detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 877–886. [Google Scholar]
- Han, S.; Mo, B.; Xu, J.; Sun, S.; Zhao, J. TransImg: A Translation Algorithm of Visible-to-Infrared Image Based on Generative Adversarial Network; School of Aerospace Engineering, Beijing Institude of Technology: Beijing, China; North Navigation Control Technology Company: Beijing, China, 2024; Volume 17, pp. 1–17. [Google Scholar]
- Yan, B.; Yang, Z.; Sun, H.; Wang, C. Ade-cyclegan: A detail enhanced image dehazing cyclegan network. Sensors 2023, 23, 3294. [Google Scholar]
- Zhuang, L.; Ma, Y.; Zou, Y.; Wang, G. A novel image dehazing algorithm via adaptive gamma-correction and modified AMEF. IEEE Access 2020, 8, 207275–207286. [Google Scholar]
- Wu, R.-Q.; Duan, Z.-P.; Guo, C.-L.; Chai, Z.; Li, C. Ridcp: Revitalizing real image dehazing via high-quality codebook priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 22282–22291. [Google Scholar]
- Zheng, Y.; Zhan, J.; He, S.; Dong, J.; Du, Y. Curricular contrastive regularization for physics-aware single image dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 5785–5794. [Google Scholar]
- Song, Y.; Luo, H.; Hui, B.; Chang, Z. An improved image dehazing and enhancing method using dark channel prior. In Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 5840–5845. [Google Scholar]
- Huo, B.; Yin, F. Image dehazing with dark channel prior and novel estimation model. Int. J. Multimed. Ubiquitous Eng. 2015, 10, 13–22. [Google Scholar]
- Li, Y.; Fu, Q.; Ye, F.; Shouno, H. Dark channel prior based blurred image restoration method using total variation and morphology. J. Syst. Eng. Electron. 2015, 26, 359–366. [Google Scholar]
Parameters | Configuration |
---|---|
CPU | Intel Core i9-13900K |
GPU | NVIDIA RTX 4090 GPU |
GPU memory size | 24 G |
Operating systems | Win 10 |
Deep learning architecture | Pytorch1.9.2 + Cuda11.4 |
Parameters | Setup |
---|---|
Epochs | 500 |
T | 200 |
Adjustable exponential decay rate β1 | 0.9 |
Adjustable exponential decay rate β2 | 0.999 |
Initial learning rate | 0.01 |
Final learning rate | 0.0001 |
Batch size | 4 |
Input image size | 128 × 128 |
Optimizer | Adam |
LDhLoss (λ1) | 1 |
LDhLoss (λ2) | 0.2 |
LDhLoss (λ3) | 0.4 |
Model | PSNR (↑) | SSIM (↑) | IE (↑) |
---|---|---|---|
DCP | 17.314 | 0.683 | 6.842 |
ADE | 16.949 | 0.716 | 7.243 |
AMEF | 20.054 | 0.831 | 7.512 |
DehazeNet | 20.768 | 0.729 | 7.315 |
AMEIF | 21.343 | 0.827 | 7.301 |
RIDCP | 24.017 | 0.847 | 7.583 |
C2PNet | 22.336 | 0.842 | 7.591 |
TIIN | 20.125 | 0.806 | 7.373 |
GDN+ | 25.350 | 0.834 | 7.396 |
Ours | 28.893 | 0.889 | 7.967 |
No. | CCA | GCCA | ESA | Lp | Lc | Lg | PSNR (↑) | SSIM (↑) | IE (↑) | FPS (↑) |
---|---|---|---|---|---|---|---|---|---|---|
1 | √ | - | - | - | - | - | 22.641 | 0.697 | 6.801 | 113.56 |
2 | - | √ | - | - | - | - | 22.678 | 0.701 | 6.823 | 116.74 |
3 | - | - | √ | - | - | - | 23.271 | 0.703 | 6.821 | 115.01 |
4 | √ | - | √ | - | - | - | 24.437 | 0.711 | 6.876 | 106.48 |
5 | - | √ | √ | - | - | - | 24.601 | 0.716 | 6.885 | 110.23 |
6 | - | √ | √ | √ | - | - | 27.034 | 0.736 | 7.184 | |
7 | - | √ | √ | - | √ | - | 26.848 | 0.703 | 6.993 | |
8 | - | √ | √ | - | - | √ | 27.192 | 0.729 | 7.244 | |
9 | - | √ | √ | √ | √ | - | 28.027 | 0.798 | 7.332 | |
10 | - | √ | √ | - | √ | √ | 27.352 | 0.723 | 7.291 | |
11 | - | √ | √ | √ | - | √ | 27.125 | 0.715 | 7.081 | |
12 | - | √ | √ | √ | √ | √ | 28.893 | 0.889 | 7.967 | |
13 | - | - | - | √ | √ | √ | 27.333 | 0.800 | 7.487 | 123.09 |
14 | √ | - | - | √ | √ | √ | 27.423 | 0.804 | 7.681 | 113.56 |
15 | - | √ | - | √ | √ | √ | 27.441 | 0.811 | 7.743 | 116.74 |
16 | - | - | √ | √ | √ | √ | 27.782 | 0.839 | 7.787 | 115.01 |
17 | √ | - | √ | √ | √ | √ | 28.507 | 0.872 | 7.811 | 106.48 |
Model | Precision | Recall | AP50 | AP50:95 | FPS | Model Size (MB) |
---|---|---|---|---|---|---|
C2PNet+ | 0.803 | 0.561 | 0.609 | 0.412 | 59.62 | 76.62 |
RIDCP+ | 0.797 | 0.556 | 0.584 | 0.399 | 51.83 | 155.33 |
Faster R-CNN+ | 0.801 | 0.545 | 0.599 | 0.396 | 20.21 | 95.61 |
RetinaNet+ | 0.814 | 0.550 | 0.607 | 0.401 | 55.32 | 78.82 |
MDD-ShipNet | 0.829 | 0.638 | 0.666 | 0.437 | 60.26 | 22.25 |
IA-YOLO | 0.813 | 0.575 | 0.625 | 0.429 | 57.23 | 137.08 |
YOLOv5s-Fog | 0.824 | 0.629 | 0.661 | 0.434 | 63.19 | 43.19 |
YOLOv8n+ | 0.815 | 0.567 | 0.618 | 0.427 | 75.42 | 3.02 |
Ours | 0.894 | 0.824 | 0.839 | 0.551 | 74.87 | 10.35 |
No. | BPSA | W-BiFPN | Lsca | Lloc | Pre. | Rec. | AP50 | AP50:95 | FPS | Model Size (MB) | Params/M |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | √ | √ | - | - | 0.817 | 0.772 | 0.752 | 0.436 | 71.68 | 10.35 | 2.15 |
2 | √ | √ | - | √ | 0.866 | 0.818 | 0.793 | 0.498 | 72.39 | 10.35 | 2.15 |
3 | √ | √ | √ | - | 0.862 | 0.813 | 0.788 | 0.519 | 72.56 | 10.35 | 2.15 |
4 | - | √ | √ | √ | 0.858 | 0.802 | 0.818 | 0.523 | 73.74 | 9.02 | 1.97 |
5 | √ | - | √ | √ | 0.845 | 0.796 | 0.815 | 0.532 | 71.83 | 10.14 | 2.09 |
6 | - | - | √ | √ | 0.868 | 0.768 | 0.794 | 0.517 | 72.75 | 8.86 | 1.92 |
7 | √ | √ | √ | √ | 0.894 | 0.824 | 0.839 | 0.551 | 74.87 | 10.35 | 2.15 |
Dataset | Precision | Recall | AP50 | AP50:95 |
---|---|---|---|---|
IRSTD | 0.894 | 0.824 | 0.839 | 0.551 |
TVIN-F | 0.889 | 0.817 | 0.826 | 0.547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Han, S.; Xu, J.; Zhao, J.; Xu, Z.; Li, L.; Han, Z.; Mo, B. IDDNet: Infrared Object Detection Network Based on Multi-Scale Fusion Dehazing. Sensors 2025, 25, 2169. https://doi.org/10.3390/s25072169
Sun S, Han S, Xu J, Zhao J, Xu Z, Li L, Han Z, Mo B. IDDNet: Infrared Object Detection Network Based on Multi-Scale Fusion Dehazing. Sensors. 2025; 25(7):2169. https://doi.org/10.3390/s25072169
Chicago/Turabian StyleSun, Shizun, Shuo Han, Junwei Xu, Jie Zhao, Ziyu Xu, Lingjie Li, Zhaoming Han, and Bo Mo. 2025. "IDDNet: Infrared Object Detection Network Based on Multi-Scale Fusion Dehazing" Sensors 25, no. 7: 2169. https://doi.org/10.3390/s25072169
APA StyleSun, S., Han, S., Xu, J., Zhao, J., Xu, Z., Li, L., Han, Z., & Mo, B. (2025). IDDNet: Infrared Object Detection Network Based on Multi-Scale Fusion Dehazing. Sensors, 25(7), 2169. https://doi.org/10.3390/s25072169