A Novel Mathematical Approach to Gait Analysis: The Reliability and Validity of the ZAY Angle for Step Length Estimation in Healthy Adults
Abstract
:Highlights
- The utilization of smartphone applications to assess gait kinematics yields reliable data.
- The ZAY angle is a valid and reliable angle that can be used to estimate individualized step lengths.
- Application of the arc length formula might provide an alternative method to determine individualized step lengths.
- Clinicians could include the ZAY angle in their gait analysis profiles to obtain individualized step lengths.
Abstract
1. Introduction
- S = the length of the arc = the step length.
- θ = the central angle of the arc = the ZAY angle = the angle between one hip at initial contact and the other hip in the terminal stance before the toes lift off the ground.
- r = the radius of the circle = the limb length.
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Ethical Approval
2.4. Sample Size Calculation
2.5. Instrumentation
2.5.1. Camera System
2.5.2. Coach’s Eye (TechSmith Corporation, East Lansing, MI, USA, Version 5)
2.6. Procedures
2.7. Data Analysis
3. Results
3.1. Validity
3.2. Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SL | step length |
SPAs | smartphone applications |
ICC | Intraclass Correlation Coefficient |
CIs | confidence intervals |
TSPs | temporospatial parameters |
IMUs | inertial measurement units |
References
- Allseits, E.; Agrawal, V.; Lučarević, J.; Gailey, R.; Gaunaurd, I.; Bennett, C. A practical step length algorithm using lower limb angular velocities. J. Biomech. 2018, 66, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Baek, S.H.; Sung, J.H.; Kim, B.J. Predictors of Step Length from Surface Electromyography and Body Impedance Analysis Parameters. Sensors 2022, 22, 5686. [Google Scholar] [CrossRef]
- Zijlstra, A.; de Bruin, E.D.; Bruins, N.; Zijlstra, W. The step length–frequency relationship in physically active community-dwelling older women. Eur. J. Appl. Physiol. 2008, 104, 427–434. [Google Scholar] [CrossRef]
- Indelicato, E.; Raccagni, C.; Runer, S.; Hannink, J.; Nachbauer, W.; Eigentler, A.; Amprosi, M.; Wenning, G.; Boesch, S. Instrumented gait analysis defines the walking signature of CACNA1A disorders. J. Neurol. 2022, 269, 2941–2947. [Google Scholar] [CrossRef]
- Ji, X.; Zeng, W.; Dai, Q.; Zhang, Y.; Du, S.; Ji, B. Machine learning-based detection of cervical spondylotic myelopathy using multiple gait parameters. BIROB 2023, 3, 100103. [Google Scholar] [CrossRef]
- Li, L.; Ma, S.; Tokuda, I.; Liu, Z.; Ma, Z.; Tian, Y.; Kang, S. Embodying rather than encoding: Towards developing a source-filter theory for undulation gait generation. BIROB 2024, 4, 100173. [Google Scholar] [CrossRef]
- Pepa, L.; Verdini, F.; Spalazzi, L. Gait parameter and event estimation using smartphones. Gait Posture 2017, 57, 217–223. [Google Scholar] [CrossRef]
- Kim, J.W.; Jang, H.J.; Hwang, D.H.; Park, C. A step, stride and heading determination for the pedestrian navigation system. J. Glob. Position. Syst. 2004, 3, 273–279. [Google Scholar] [CrossRef]
- Shin, S.H.; Park, C.G. Adaptive step length estimation algorithm using optimal parameters and movement status awareness. Med. Eng. Phys. 2011, 33, 1064–1071. [Google Scholar] [CrossRef]
- Weinberg, H. Using the ADXL202 in pedometer and personal navigation applications. Analog Devices AN-602 Appl. Note 2002, 2, 1–6. [Google Scholar]
- Zijlstra, W.; Hof, A.L. Displacement of the pelvis during human walking: Experimental data and model predictions. Gait Posture 1997, 6, 249–262. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Alvarez, D.; Lopez, A.M.; Alvarez, J.C. Modified pendulum model for mean step length estimation. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23–26 August 2007; IEEE: New York, NY, USA, 2007; pp. 1371–1374. [Google Scholar] [CrossRef]
- Kirtley, C. Clinical Gait Analysis: Theory and Practice; Elsevier Health Sciences: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hof, A.L. Scaling gait data to body size. Gait Posture 1996, 4, 222–223. [Google Scholar]
- Roggio, F.; Ravalli, S.; Maugeri, G.; Bianco, A.; Palma, A.; Di Rosa, M.; Musumeci, G. Technological advancements in the analysis of human motion and posture management through digital devices. World J. Orthop. 2021, 12, 467–484. [Google Scholar] [CrossRef]
- Manor, B.; Yu, W.; Zhu, H.; Harrison, R.; Lo, O.Y.; Lipsitz, L.; Zhou, J. Smartphone app–based assessment of gait during normal and dual-task walking: Demonstration of validity and reliability. JMIR mHealth uHealth 2018, 6, e8815. [Google Scholar] [CrossRef]
- Mousavi, S.H.; Hijmans, J.M.; Moeini, F.; Rajabi, R.; Ferber, R.; van der Worp, H.; Zwerver, J. Validity and reliability of a smartphone motion analysis app for lower limb kinematics during treadmill running. Phys. Ther. Sport 2020, 43, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Tanen, L.; Docherty, C.L.; Van Der Pol, B.; Simon, J.; Schrader, J. Prevalence of chronic ankle instability in high school and division I athletes. Foot Ankle Spec. 2014, 7, 37–44. [Google Scholar] [CrossRef]
- Bujang, M.A.; Baharum, N. A simplified guide to determination of sample size requirements for estimating the value of intraclass correlation coefficient: A review. Arch Orofac. Sci. 2017, 12, 1–11. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Whiteley, R. Coach’s eye. Br. J. Sports Med. 2015, 49, 1349. [Google Scholar] [CrossRef]
- Ko, J.; Rosen, A.B.; Brown, C.N. Functional performance deficits in adolescent athletes with a history of lateral ankle sprain(s). Phys. Ther. Sport 2018, 33, 125–132. [Google Scholar] [CrossRef]
- Akhtaruzzaman, M.; Shafie, A.A.; Khan, M.R. Gait analysis: Systems, technologies, and importance. J. Mech. Med. Biol. 2016, 16, 1630003. [Google Scholar] [CrossRef]
- Valencia, O.; Araneda, O.; Cárcamo, M.; Carpes, F.P.; Venegas, R.G. Relationship between lower limb anthropometry and temporo-spatial parameters in gait of young adults. Retos 2018, 33, 258–260. [Google Scholar] [CrossRef]
- Andrews, J.R.; Harrelson, G.L.; Wilk, K.E. Physical Rehabilitation of the Injured Athlete: Expert Consult-Online and Print; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, H.; Schiller, J. A step length estimation model for position tracking. In Proceedings of the 2015 International Conference on Localization and GNSS (ICL-GNSS), Gothenburg, Sweden, 22–24 June 2015; IEEE: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Yang, S.; Li, Q. Ambulatory walking speed estimation under different step lengths and frequencies. In Proceedings of the 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, QC, Canada, 6–9 July 2010; IEEE: New York, NY, USA, 2010; pp. 658–663. [Google Scholar] [CrossRef]
- Sawicki, G.S.; Ferris, D.P. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. J. Exp. Biol. 2009, 212, 21–31. [Google Scholar] [CrossRef]
- Lim, Y.P.; Lin, Y.C.; Pandy, M.G. Effects of step length and step frequency on lower-limb muscle function in human gait. J. Biomech. 2017, 57, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Schulz, B.W.; Ashton-Miller, J.A.; Alexander, N.B. The effects of age and step length on joint kinematics and kinetics of large out-and-back steps. Clin. Biomech. 2008, 23, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Whitcome, K.K.; Miller, E.E.; Burns, J.L. Pelvic rotation effect on human stride length: Releasing the constraint of obstetric selection. Anat. Rec. 2017, 300, 752–763. [Google Scholar] [CrossRef]
- Roemmich, R.T.; Leech, K.A.; Gonzalez, A.J.; Bastian, A.J. Trading symmetry for energy cost during walking in healthy adults and persons poststroke. Neurorehabilit. Neural Repair 2019, 33, 602–613. [Google Scholar] [CrossRef]
- Hollman, J.H.; McDade, E.M.; Petersen, R.C. Normative spatiotemporal gait parameters in older adults. Gait Posture 2011, 34, 111–118. [Google Scholar] [CrossRef]
- Beauchet, O.; Allali, G.; Sekhon, H.; Beauchet, O.; Allali, G.; Sekhon, H.; Verghese, J.; Guilain, S.; Steinmetz, J.P.; Helbostad, J.L. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The biomathics and Canadian gait consortiums initiative. Front. Hum. Neurosci. 2017, 11, 353. [Google Scholar] [CrossRef]
- Sessoms, P.H. Step by step: A study of step length in able-bodied persons, race walkers, and persons with amputation. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, 2008. [Google Scholar]
- Krause, D.A.; Boyd, M.S.; Hager, A.N.; Smoyer, E.C.; Thompson, A.T.; Hollman, J.H. Reliability and accuracy of a goniometer mobile device application for video measurement of the functional movement screen deep squat test. Int. J. Sports Phys. Ther. 2015, 10, 37. [Google Scholar]
Gait Parameter | Mean ± SD |
---|---|
Limb length | 92.08 ± 5.18 cm |
Step Length (X1) | 53.94 ± 7.19 cm |
Step Length (X2) | 59.68 ± 8.67 cm |
Step Length (X3) | 61.73 ± 7.71 cm |
Calculated Angle (θ1) | 33.57 ± 4.21 |
Analyzed Angle (ß1) | 34.09 ± 5.25 |
Calculated Angle (θ1) | 35.16 ± 4.67 |
Calculated Angle (θ2) | 37.13 ± 4.99 |
Analyzed Angle (ß2) | 39.76 ± 4.83 |
Calculated Angle (θ3) | 38.41 ± 4.45 |
Analyzed Angle (ß3) | 40.03 ± 5.69 |
Correlations | r | p Value |
---|---|---|
Analyzed angle vs. calculated angle 1 | 0.70 | 0.001 * |
Analyzed angle vs. calculated angle 2 | 0.66 | 0.001 * |
Analyzed angle vs. calculated angle 3 | 0.60 | 0.001 * |
Variables | Step Length r | p Value |
---|---|---|
Limb Length | 0.35 | 0.04 * |
Calculated Angle (θ1) | 0.87 | 0.001 * |
Analyzed Angle (ß1) | 0.60 | 0.001 * |
Test–retest reliability between two trials | ICC | p value = 0.001 * |
Calculated angle of first step in trial 1 vs. trial 2 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haroun, Z.M.; Zakaria, H.M.; Ibrahim, Z.M.; Abdelraouf, O.R.; Khalil, A.A. A Novel Mathematical Approach to Gait Analysis: The Reliability and Validity of the ZAY Angle for Step Length Estimation in Healthy Adults. Sensors 2025, 25, 2142. https://doi.org/10.3390/s25072142
Haroun ZM, Zakaria HM, Ibrahim ZM, Abdelraouf OR, Khalil AA. A Novel Mathematical Approach to Gait Analysis: The Reliability and Validity of the ZAY Angle for Step Length Estimation in Healthy Adults. Sensors. 2025; 25(7):2142. https://doi.org/10.3390/s25072142
Chicago/Turabian StyleHaroun, Ziad M., Hoda M. Zakaria, Zizi M. Ibrahim, Osama R. Abdelraouf, and Aya A. Khalil. 2025. "A Novel Mathematical Approach to Gait Analysis: The Reliability and Validity of the ZAY Angle for Step Length Estimation in Healthy Adults" Sensors 25, no. 7: 2142. https://doi.org/10.3390/s25072142
APA StyleHaroun, Z. M., Zakaria, H. M., Ibrahim, Z. M., Abdelraouf, O. R., & Khalil, A. A. (2025). A Novel Mathematical Approach to Gait Analysis: The Reliability and Validity of the ZAY Angle for Step Length Estimation in Healthy Adults. Sensors, 25(7), 2142. https://doi.org/10.3390/s25072142