Respiratory Monitoring with Textile Inductive Electrodes in Driving Applications: Effect of Electrode’s Positioning and Form Factor on Signal Quality
Abstract
:1. Introduction
- What is the effect of the electrode’s positioning on signal quality?
- What is the effect of the electrode’s form factor on signal quality?
2. Materials and Methods
2.1. Experimental Setup
- Three 32-inch Samsung 1080p screens—model UN32N5300AFXZC by Samsung Group (Suwon, Republic of Korea);
- A racing car seat—model S105L-BKRD by GTR Simulator (Ontario, CA, USA);
- A set of steering wheel and pedals—model B016JBE8LU by Logitech International S.A. (San Jose, CA, USA);
- A driving simulator software—York driving simulator 7.08.24 by York Computer Technologies Inc. (Kingston, ON, Canada).
2.2. Data Acquisition
- One textile respiratory signal on the seat back, or else four textile respiratory signals on the seat belt (sampled at 40 Hz). On the seat belt, the four signals were acquired simultaneously.
- One reference respiratory signal from the strain gauge around the chest (sampled at 500 Hz).
2.3. Data Analysis
- SBR (signal-to-baseline ratio). Higher SBR value means lower effect of baseline wandering on signal quality.
- SHR (signal-to-high-frequency-noise ratio). Higher SHR value means lower effect of high frequency noise on signal quality.
- MMR (median-to-mean ratio). Higher MMR value means lower effect of motion artifact on signal quality.
- SPC (spectral correlation) between textile and reference spectra. Higher SPC value means the textile-based signal is as likely as the reference signal to allow breathing rate calculation through peak detection.
3. Results
3.1. General Assessment of Signal Quality
3.2. Signal Quality on the Seat Back
3.2.1. Signal Quality vs. Electrode’s Position on Seat Back
3.2.2. Signal Quality vs. Electrode’s Size on Seat Back
3.2.3. Signal Quality vs. Electrode’s Shape on Seat Back
3.3. Signal Quality on the Seat Belt
3.3.1. Signal Quality vs. Electrode’s Position on Seat Belt
3.3.2. Signal Quality vs. Electrode’s Size on Seat Belt
3.4. Signal Quality: Electrode on Seat Back vs. Electrode on Seat Belt
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leonhardt, S.; Leicht, L.; Teichmann, D. Unobtrusive vital sign monitoring in automotive environments—A review. Sensors 2018, 18, 3080. [Google Scholar] [CrossRef] [PubMed]
- Naziyok, T.P.; Zeleke, A.A.; Röhrig, R. Contactless patient monitoring for general wards: A systematic technology review. Explor. Complex. Health Interdiscip. Syst. Approach 2016, 707–711. [Google Scholar] [CrossRef]
- Khan, M.A.; Sayed, H.E.; Malik, S.; Zia, T.; Khan, J.; Alkaabi, N.; Ignatious, H. Level-5 autonomous driving—Are we there yet? a review of research literature. ACM Comput. Surv. (CSUR) 2022, 55, 1–38. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, W.; Deng, B.; Wang, Z.; Zhang, F.; Zheng, W.; Cao, W.; Nan, J.; Lian, Y.; Burke, A.F. Autonomous driving system: A comprehensive survey. Expert Syst. Appl. 2023, 242, 122836. [Google Scholar]
- Rhiu, I.; Kwon, S.; Bahn, S.; Yun, M.H.; Yu, W. Research Issues in Smart Vehicles and Elderly Drivers: A Literature Review. Int. J. Hum.—Comput. Interact. 2015, 31, 635–666. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X. Contactless Vital Signs Monitoring; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Sidikova, M.; Martinek, R.; Kawala-Sterniuk, A.; Ladrova, M.; Jaros, R.; Danys, L.; Simonik, P. Vital sign monitoring in car seats based on electrocardiography, ballistocardiography and seismocardiography: A review. Sensors 2020, 20, 5699. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Warnecke, J.M.; Haghi, M.; Deserno, T.M. Unobtrusive health monitoring in private spaces: The smart vehicle. Sensors 2020, 20, 2442. [Google Scholar] [CrossRef]
- Sadek, I.; Biswas, J.; Abdulrazak, B. Ballistocardiogram signal processing: A review. Health Inf. Sci. Syst. 2019, 7, 10. [Google Scholar] [PubMed]
- Teichmann, D.; Foussier, J.; Jia, J.; Leonhardt, S.; Walter, M. Noncontact monitoring of cardiorespiratory activity by electromagnetic coupling. IEEE Trans. Biomed. Eng. 2013, 60, 2142–2152. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.; Eilebrecht, B.; Wartzek, T.; Leonhardt, S. The smart car seat: Personalized monitoring of vital signs in automotive applications. Pers. Ubiquitous Comput. 2011, 15, 707–715. [Google Scholar] [CrossRef]
- Radomski, A.; Teichmann, D. On-Road Evaluation of Unobtrusive In-Car Respiration Monitoring. Sensors 2024, 24, 4500. [Google Scholar] [PubMed]
- Vetter, P.; Leicht, L.; Leonhardt, S.; Teichmann, D. Integration of an electromagnetic coupled sensor into a driver seat for vital sign monitoring: Initial insight. In Proceedings of the 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Vienna, Austria, 27–28 June 2017; pp. 185–190. [Google Scholar]
- Richer, A.; Adler, A. Eddy current based flexible sensor for contactless measurement of breathing. In Proceedings of the 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, Ottawa, ON, Canada, 16–19 May 2005; pp. 257–260. [Google Scholar]
- Steffen, M.; Heimann, K.; Bernstein, N.; Leonhardt, S. Multichannel simultaneous magnetic induction measurement system (MUSIMITOS). Physiol. Meas. 2008, 29, S291. [Google Scholar] [CrossRef] [PubMed]
- Teichmann, D.; Foussier, J.; Leonhardt, S. Respiration monitoring based on magnetic induction using a single coil. In Proceedings of the 2010 Biomedical Circuits and Systems Conference (BioCAS), Paphos, Cyprus, 3–5 November 2010; pp. 37–40. [Google Scholar]
- Cho, H.-S.; Yang, J.-H.; Lee, S.-Y.; Lee, J.-W.; Lee, J.-H. Wearable fabric loop sensor based on magnetic-field-induced conductivity for simultaneous detection of cardiac activity and respiration signals. Sensors 2022, 22, 9884. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Ullah, S.; Fernández-García, R.; Gil, I. Wearable sensors for respiration monitoring: A review. Sensors 2023, 23, 7518. [Google Scholar] [CrossRef] [PubMed]
- Kiener, K.; Anand, A.; Fobelets, W.; Fobelets, K. Low power respiration monitoring using wearable 3D knitted helical coils. IEEE Sens. J. 2021, 22, 1374–1381. [Google Scholar] [CrossRef]
- Leicht, L.; Vetter, P.; Leonhardt, S.; Teichmann, D. The PhysioBelt: A safety belt integrated sensor system for heart activity and respiration. In Proceedings of the 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Vienna, Austria, 27–28 June 2017; pp. 191–195. [Google Scholar]
- Duverger, J.E.; Bellemin, V.; Forcier, P.; Decaens, J.; Gagnon, G.; Saidi, A. A quantitative method to guide the integration of textile inductive electrodes in automotive applications for respiratory monitoring. Sensors 2024, 24, 7483. [Google Scholar] [CrossRef] [PubMed]
Prototype | Shape | Dimension (mm) | Area (cm2) | Number of Turns | Inductance (µH) |
---|---|---|---|---|---|
A.73.12 | Circular | 60 | 28 | 10 | 2.9 |
A.73.15 | Circular | 120 | 113 | 20 | 19.8 |
A.73.20 | Circular | 80 | 50 | 13 | 5.8 |
A.73.39 | Rectangular | 150 × 50 | 75 | 5 | 2.5 |
A.73.40 | Rectangular | 100 × 50 | 50 | 5 | 1.7 |
Subject (#) | Sex | Shoulder Width (cm) | Torso Length (cm) | Torso Area (cm2) |
---|---|---|---|---|
1 | Male | 55 | 52 | 1430 |
2 | Male | 44 | 40 | 840 |
3 | Female | 36 | 38 | 684 |
Segment (#) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Radius (m) | 2000 | 2000 | 400 | 400 | 850 | 400 | 400 | 850 | 400 | 400 |
Arc (m) | 1531 | 1531 | 306 | 306 | 1202 | 306 | 306 | 1202 | 306 | 306 |
Direction | Right | Left | Right | Left | Left | Right | Left | Left | Right | Left |
Segment (#) | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Radius (m) | 2000 | 2000 | 400 | 400 | 850 | 400 | 400 | 850 | 400 | 400 |
Arc (m) | 1531 | 1531 | 306 | 306 | 1202 | 306 | 306 | 1202 | 306 | 306 |
Direction | Right | Left | Right | Left | Left | Right | Left | Left | Right | Left |
Session (#) | Host | Electrode | Position | Area (cm2) | Shape | Number of Textile Signals | Number of Reference Signals |
---|---|---|---|---|---|---|---|
1 | Seat back | A.73.12 | Upper back (1) | 28 | Circular | 1 | 1 |
2 | Seat back | A.73.12 | Middle back (2) | 28 | Circular | 1 | 1 |
3 | Seat back | A.73.12 | Lower back (3) | 28 | Circular | 1 | 1 |
4 | Seat back | A.73.20 | Middle back (2) | 50 | Circular | 1 | 1 |
5 | Seat back | A.73.15 | Middle back (2) | 113 | Circular | 1 | 1 |
6 | Seat back | A.73.40 | Middle back (2) | 50 | Rectangular | 1 | 1 |
7 | Seat belt | A.73.39 | Chest and Waist (1, 2, 3, 4) | 75 | Rectangular | 4 | 1 |
8 | Seat belt | A.73.40 | Chest and Waist (1, 2, 3, 4) | 50 | Rectangular | 4 | 1 |
Note. For the three subjects, the complete set of recordings provided 42 textile respiratory signals and 24 reference respiratory signals. |
SBR (1) | SHR (1) | MMR (1) | ||||
---|---|---|---|---|---|---|
Textile | Reference | Textile | Reference | Textile | Reference | |
Median | 0.26 | 2.98 | 47 | 134 | 0.32 | 0.50 |
Mean | 0.16 | 2.60 | 43 | 129 | 0.32 | 0.50 |
STD | 0.28 | 1.52 | 16 | 26 | 0.09 | 0.08 |
Range | 1.08 | 5.89 | 58 | 105 | 0.32 | 0.31 |
n | 42 | 24 | 42 | 24 | 42 | 24 |
p | 3.57 × 10−10 | 3.98 × 10−9 | 5.85 × 10−5 |
Upper Back SQM (1) | Middle Back SQM (1) | Lower Back SQM (1) | |
---|---|---|---|
Median | 0.178 | 0.050 | 0.020 |
Mean | 0.228 | 0.063 | 0.036 |
STD | 0.214 | 0.049 | 0.036 |
Range | 0.998 | 0.183 | 0.150 |
n | 102 | 102 | 102 |
p value |
|
28 cm2 SQM (1) | 50 cm2 SQM (1) | 113 cm2 SQM (1) | |
---|---|---|---|
Median | 0.037 | 0.059 | 0.212 |
Mean | 0.049 | 0.137 | 0.233 |
STD | 0.040 | 0.164 | 0.221 |
Range | 0.150 | 0.755 | 1.000 |
n | 102 | 102 | 102 |
p value |
|
Circular Shape SQM (1) | Rectangular Shape SQM (1) | |
---|---|---|
Median | 0.011 | 0.056 |
Mean | 0.028 | 0.123 |
STD | 0.035 | 0.169 |
Range | 0.163 | 1.000 |
n | 102 | 102 |
p value | 3.19 × 10−15 |
Electrodes on Belt: 50 cm2 | Electrodes on Belt: 75 cm2 | |||
---|---|---|---|---|
Chest SQM (1) | Waist SQM (1) | Chest SQM (1) | Waist SQM (1) | |
Median | 0.093 | 0.097 | 0.026 | 0.070 |
Mean | 0.190 | 0.131 | 0.062 | 0.131 |
STD | 0.232 | 0.137 | 0.071 | 0.161 |
Range | 1.000 | 0.668 | 0.311 | 1.000 |
n | 204 | 204 | 204 | 204 |
p value | 0.213 | 8.81 × 10−7 | ||
Important note: SQM values for 50 cm2 and 75 cm2 shall not be compared since they have not been normalized in a common pool. |
Electrodes on Belt: Chest | Electrodes on Belt: Waist | |||
---|---|---|---|---|
50 cm2 SQM (1) | 75 cm2 SQM (1) | 50 cm2 SQM (1) | 75 cm2 SQM (1) | |
Median | 0.096 | 0.022 | 0.136 | 0.080 |
Mean | 0.191 | 0.050 | 0.183 | 0.136 |
STD | 0.229 | 0.055 | 0.189 | 0.160 |
Range | 1.000 | 0.232 | 0.931 | 1.000 |
n | 204 | 204 | 204 | 204 |
p value | 7.91 × 10−13 | 1.76 × 10−2 | ||
Important note: SQM values for chest and waist shall not be compared since they have not been normalized in a common pool. |
Electrodes on Seat Back SQM (1) | Electrodes on Seat Belt SQM (1) | |
---|---|---|
Median | 0.013 | 0.062 |
Mean | 0.032 | 0.120 |
STD | 0.059 | 0.156 |
Range | 0.694 | 1.000 |
n | 612 | 816 |
p value | 3.09 × 10−58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duverger, J.E.; Bellemin, V.; Renaud Dumoulin, G.-G.; Forcier, P.; Decaens, J.; Gagnon, G.; Saidi, A. Respiratory Monitoring with Textile Inductive Electrodes in Driving Applications: Effect of Electrode’s Positioning and Form Factor on Signal Quality. Sensors 2025, 25, 2035. https://doi.org/10.3390/s25072035
Duverger JE, Bellemin V, Renaud Dumoulin G-G, Forcier P, Decaens J, Gagnon G, Saidi A. Respiratory Monitoring with Textile Inductive Electrodes in Driving Applications: Effect of Electrode’s Positioning and Form Factor on Signal Quality. Sensors. 2025; 25(7):2035. https://doi.org/10.3390/s25072035
Chicago/Turabian StyleDuverger, James Elber, Victor Bellemin, Geordi-Gabriel Renaud Dumoulin, Patricia Forcier, Justine Decaens, Ghyslain Gagnon, and Alireza Saidi. 2025. "Respiratory Monitoring with Textile Inductive Electrodes in Driving Applications: Effect of Electrode’s Positioning and Form Factor on Signal Quality" Sensors 25, no. 7: 2035. https://doi.org/10.3390/s25072035
APA StyleDuverger, J. E., Bellemin, V., Renaud Dumoulin, G.-G., Forcier, P., Decaens, J., Gagnon, G., & Saidi, A. (2025). Respiratory Monitoring with Textile Inductive Electrodes in Driving Applications: Effect of Electrode’s Positioning and Form Factor on Signal Quality. Sensors, 25(7), 2035. https://doi.org/10.3390/s25072035