Optical Fiber Vibration Signal Recognition Based on the EMD Algorithm and CNN-LSTM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Empirical Mode Decomposition
2.2. Pearson Correlation Coefficient Method
2.3. CNN-LSTM
2.3.1. Convolutional Neural Network
2.3.2. Long Short-Term Memory Neural Network
2.3.3. Classifier Evaluation Metrics
2.4. EMD-CNN-LSTM Model
3. Results
3.1. Experiment Setup
3.2. Signal Preprocessing
3.3. Model Construction
3.4. Experimental Results
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhan, Y.G.; Liu, L.R.; Wang, Z.Y.; Zhang, W.Z.; Li, K.H.; Liu, Y.F.; Wu, J.Y.; Chen, Y.C.; Chen, B.Q.; Ye, Q.; et al. Pipeline leakage identification method based on DPR-net and distributed optical fiber acoustic sensing technology. Opt. Commun. 2025, 574, 131096. [Google Scholar] [CrossRef]
- Lyu, C.G.; Niu, Z.H.; Tian, J.C.; Jin, J.; Yang, J.C.; Ge, C.F. Identification of Intrusion Events Based on Distributed Optical Fiber Sensing in Complex Environment. IEEE Internet Things J. 2022, 9, 24212–24220. [Google Scholar] [CrossRef]
- Meng, H.; Wang, S.; Gao, C.; Liu, F. Research on Recognition Method of Railway Perimeter Intrusions Based on Φ-OTDR Optical Fiber Sensing Technology. IEEE Sens. J. 2021, 21, 9852–9859. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Li, Y. Long-Distance Pipeline Safety Early Warning: A Distributed Optical Fiber Sensing Semi-Supervised Learning Method. IEEE Sens. J. 2021, 21, 19453–19461. [Google Scholar] [CrossRef]
- Yan, Y.X.; Zheng, H.; Zhao, Z.Y.; Guo, C.J.; Wu, X.; Hu, J.H.; Lau, A.P.T.; Lu, C. Distributed Optical Fiber Sensing Assisted by Optical Communication Techniques. J. Light. Technol. 2021, 39, 3654–3670. [Google Scholar] [CrossRef]
- Kandamali, D.F.; Cao, X.; Tian, M.; Jin, Z.; Dong, H.; Yu, K. Machine learning methods for identification and classification of events in varphi-OTDR systems: A review. Appl. Opt. 2022, 61, 2975–2997. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Liu, X.; Xiao, Y.; Wang, M.; Zheng, Y.; Rao, Y. One-Dimensional CNN-Based Intelligent Recognition of Vibrations in Pipeline Monitoring With DAS. J. Light. Technol. 2019, 37, 4359–4366. [Google Scholar] [CrossRef]
- He, M.; Feng, L.; Qu, J. Denoising algorithm of Φ_OTDR signal based on clear iterative EMD interval-thresholding. Opt. Commun. 2019, 453, 124352. [Google Scholar] [CrossRef]
- Xu, C.; Guan, J.; Bao, M.; Lu, J.; Ye, W. Pattern recognition based on enhanced multifeature parameters for vibration events in φ-OTDR distributed optical fiber sensing system. Microw. Opt. Technol. Lett. 2017, 59, 3134–3141. [Google Scholar] [CrossRef]
- Du, Y.; Xu, B.; Zhang, L.; Zhang, Y. Optical fiber vibration signal recognition based on an efficient multidimensional feature extraction network. Appl. Opt. 2024, 63, 2011–2019. [Google Scholar] [CrossRef]
- Li, Y.; Cao, X.; Ni, W.; Yu, K. A deep learning model enabled multi-event recognition for distributed optical fiber sensing. Sci. China Inf. Sci. 2024, 67, 132404. [Google Scholar] [CrossRef]
- Peng, Z.; Jian, J.; Wen, H.; Gribok, A.; Wang, M.; Liu, H.; Huang, S.; Mao, Z.H.; Chen, K.P. Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions. Opt. Express 2020, 28, 27277–27292. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Eren, L.; Ince, T.; Kiranyaz, S. A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier. J. Signal Process. Syst. 2018, 91, 179–189. [Google Scholar] [CrossRef]
- Qu, J.L.; Wang, X.F.; Gao, F.; Zhou, Y.P.; Zhang, X.Y. Noise assisted signal decomposition method based on complex empirical mode decomposition. Acta Phys. Sin. 2014, 63, 110201. [Google Scholar] [CrossRef]
- Chen, W.; Ma, X.H.; Ma, Q.L.; Wen, J.J. Denoising Method of the Φ-OTDR System Based on EMD-PCC. IEEE Sens. J. 2021, 21, 12113–12118. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.L.; Zhao, X.F.; Hong, D.F.; Cai, W.; Yu, C.G.; Yang, N.J.; Cai, W.W. Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification. Neurocomputing 2022, 501, 246–257. [Google Scholar] [CrossRef]
- Nammous, M.K.; Saeed, K.; Kobojek, P. Using a small amount of text-independent speech data for a BiLSTM large-scale speaker identification approach. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 764–770. [Google Scholar] [CrossRef]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Hu, S.; Hu, X.; Li, J.; He, Y.; Qin, H.; Li, S.; Liu, M.; Liu, C.; Zhao, C.; Chen, W. Enhancing Vibration Detection in ϕ-OTDR Through Image Coding and Deep Learning-Driven Feature Recognition. IEEE Sens. J. 2024, 24, 38344–38351. [Google Scholar] [CrossRef]
- Wang, Z.; Lou, S.; Liang, S.; Sheng, X. Multi-Class Disturbance Events Recognition Based on EMD and XGBoost in φ-OTDR. IEEE Access 2020, 8, 63551–63558. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, S.; Li, X.; Wang, Z.; Xu, J.; Rao, Y. Separation and Determination of the Disturbing Signals in Phase-Sensitive Optical Time Domain Reflectometry (Φ-OTDR). J. Light. Technol. 2015, 33, 3156–3162. [Google Scholar] [CrossRef]
- Ghimire, S.; Yaseen, Z.M.; Farooque, A.A.; Deo, R.C.; Zhang, J.; Tao, X.H. Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. Sci. Rep. 2021, 11, 17497. [Google Scholar] [CrossRef]
- Wang, M.; Feng, H.; Qi, D.; Du, L.; Sha, Z. φ-OTDR pattern recognition based on CNN-LSTM. Optik 2023, 272, 170380. [Google Scholar] [CrossRef]
Layers | Filters | Kernel Size | Stride |
---|---|---|---|
Conv1 | 64 | 3 | 1 |
Pool1 | 64 | 2 | 2 |
Conv2 | 128 | 3 | 1 |
Pool2 | 128 | 2 | 2 |
Conv3 | 256 | 3 | 1 |
Pool3 | 256 | 2 | 2 |
Layers | Input Size | Hidden Size |
---|---|---|
LSTM1 | 256 | 256 |
LSTM2 | 256 | 128 |
Model | Event Type | Precision | Recall | F1 Score |
---|---|---|---|---|
Alarm | 0.9565 | 0.7521 | 0.8421 | |
LSTM | Other | 0.7379 | 0.8352 | 0.7835 |
Safe | 0.8800 | 0.9821 | 0.9283 | |
Alarm | 0.9636 | 0.9060 | 0.9339 | |
VGG | Other | 0.8866 | 0.9247 | 0.9053 |
Safe | 0.9646 | 0.9909 | 0.9776 | |
Alarm | 1.0000 | 0.9262 | 0.9617 | |
CNN-LSTM | Other | 0.9143 | 0.9897 | 0.9505 |
Safe | 0.9804 | 0.9901 | 0.9852 |
Model | Identification Rates (%) | |||
---|---|---|---|---|
Alarm | Other | Safe | Average | |
Net1 | 95.62 | 98.87 | 97.47 | 97.32 |
Net2 | 89.95 | 95.68 | 95.11 | 93.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Zhen, Y.; Li, P.; Hu, X.; Yang, L. Optical Fiber Vibration Signal Recognition Based on the EMD Algorithm and CNN-LSTM. Sensors 2025, 25, 2016. https://doi.org/10.3390/s25072016
Li K, Zhen Y, Li P, Hu X, Yang L. Optical Fiber Vibration Signal Recognition Based on the EMD Algorithm and CNN-LSTM. Sensors. 2025; 25(7):2016. https://doi.org/10.3390/s25072016
Chicago/Turabian StyleLi, Kun, Yao Zhen, Peng Li, Xinyue Hu, and Lixia Yang. 2025. "Optical Fiber Vibration Signal Recognition Based on the EMD Algorithm and CNN-LSTM" Sensors 25, no. 7: 2016. https://doi.org/10.3390/s25072016
APA StyleLi, K., Zhen, Y., Li, P., Hu, X., & Yang, L. (2025). Optical Fiber Vibration Signal Recognition Based on the EMD Algorithm and CNN-LSTM. Sensors, 25(7), 2016. https://doi.org/10.3390/s25072016