Simulation and Modelling of C+L+S Multiband Optical Transmission for the OCATA Time Domain Digital Twin †
Abstract
:1. Introduction
2. Numerical Methods for C+L+S Optical Signal Propagation
2.1. Split-Step Fourier Method
2.2. Fourth-Order Runge–Kutta in the Interaction Picture Method
2.3. Adaptive Step Size Algorithm
Algorithm 1. Adaptive step size algorithm for MB WDM signal propagation. | |
INPUT: Δz, δGf OUTPUT: Δz | |
1: | δ ← LEM(·) |
2: | if δ < δG/2 then Δznew ← Δz ∗ 2η |
3: | else if δ > 2 δG then Δznew ← Δz/2 |
4: | else Δznew ← Δz |
5: | if Δznew > MAX_Δz then Δznew ← MAX_Δz |
6: | return Δznew |
3. Machine Learning Models
3.1. OCATA MB Time Domain DT Modelling and QoT Estimation
Algorithm 2. Feature generator. | |
INPUT: Txmodel, Txconfig, n_bits | |
OUTPUT: Y | |
1: 2: 3: 4: | bitSequence ← PRBS(n_bits) X ← Txmodel.generateIQConst (bitSequence, Txconfig) Y ← GMMfitting(X) return Y |
3.2. End-to-End Lightpath Modelling Using FLANNs
3.3. DNN-Based Concatenated Model
4. Results
4.1. MB Optical System
4.2. B. B. MB Optical System Simulation
4.3. C. C. MB Optical Propagation Models
4.4. QoT Estimation
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cisco Annual Internet Report (2018–2023); White Paper: San Jose, CA, USA, 2020.
- Ruiz, M.; Hernandez, J.A.; Quagliotti, M.; Hugues-Salas, E.; Riccardi, E.; Rafel, A.; Velasco, L.; de Dios, O.G. Network Traffic Analysis under Emerging Beyond-5G Scenarios for Multi-Band Optical Technology Adoption. J. Opt. Commun. Netw. 2023, 15, F36–F47. [Google Scholar]
- Souza, A.; Correia, B.; Napoli, A.; Curri, V.; Costa, N.; Pedro, J.; Pires, J. Cost analysis of ultrawideband transmission in optical networks. J. Opt. Commun. Netw. 2024, 16, 81–93. [Google Scholar] [CrossRef]
- Casellas, R.; Martinez, R.; Vilalta, R.; Muñoz, R. Overview of SDN control of multiband over SDM optical networks with physical layer impairments [Invited Tutorial]. J. Opt. Commun. Netw. 2025, 17, A165–A177. [Google Scholar] [CrossRef]
- Barzegar, S.; Ruiz, M.; Sgambelluri, A.; Cugini, F.; Napoli, A.; Velasco, L. Soft-Failure Detection, Localization, Identification, and Severity Prediction by Estimating QoT Model Input Parameters. Trans. Netw. Serv. Manag. 2021, 18, 2627–2640. [Google Scholar]
- Agrawal, G. Nonlinear Fiber Optics, 2nd ed.; Academic: London, UK, 1995. [Google Scholar]
- Rieznik, A.; Heidt, A.; Konig, P.; Bettachini, V.; Grosz, D. Optimum Integration Procedures for Supercontinuum Simulation. IEEE Photonics J. 2012, 4, 552–560. [Google Scholar] [CrossRef]
- Sinkin, O.; Holzlohner, R.; Zweck, J.; Menyuk, C.R. Optimization of the split-step Fourier method in modeling optical-fiber communications systems. J. Light. Technol. 2003, 21, 61–68. [Google Scholar] [CrossRef]
- Poggiolini, P.; Bosco, G.; Carena, A.; Curri, V.; Jiang, Y.; Forghieri, F. The GN model of fiber non-linear propagation and its applications. J. Light. Technol. 2014, 32, 694–721. [Google Scholar]
- Carena, A.; Bosco, G.; Curri, V.; Jiang, Y.; Poggiolini, P.; Forghieri, F. EGN model of non-linear fiber propagation. Opt. Express 2014, 22, 16335–16362. [Google Scholar] [CrossRef]
- Mehrabi, M.; Beyranvand, H.; Emadi, J. Multi-Band Elastic Optical Networks: Inter-Channel Stimulated Raman Scattering-Aware Routing, Modulation Level and Spectrum Assignment. J. Light. Technol. 2021, 39, 3360–3370. [Google Scholar] [CrossRef]
- Souza, A.; Costa, N.; Pedro, J.; Pires, J. Comparison of fast quality of transmission estimation methods for C + L + S optical systems. J. Opt. Commun. Netw. 2023, 15, F1–F12. [Google Scholar] [CrossRef]
- Morais, R.; Pedro, J. Machine learning models for estimating quality of transmission in DWDM networks. J. Opt. Commun. Netw. 2018, 10, D84–D99. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, G.; Fan, Q.; Zeng, D.; Guo, C.; Lu, L.; Li, J.; Xie, C.; Lu, C.; Khan, F.; et al. Performance comparisons between machine learning and analytical models for quality of transmission estimation in wavelength-division-multiplexed systems. J. Opt. Commun. Netw. 2021, 13, B35–B44. [Google Scholar]
- Zhuge, Q.; Liu, X.; Zhang, Y.; Cai, M.; Liu, Y.; Qiu, Q.; Zhong, X.; Wu, J.; Gao, R.; Yi, L.; et al. Building a digital twin for intelligent optical networks [Invited Tutorial]. J. Opt. Commun. Netw. 2023, 15, C242–C262. [Google Scholar]
- Curri, V. GNPy model of the physical layer for open and disaggregated optical networking [Invited]. J. Opt. Commun. Netw. 2022, 14, C92–C104. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhang, Y.; Cai, M.; Fu, M.; Zhong, X.; Yi, L.; Hu, W.; Zhuge, Q. Building a digital twin of an edfa for optical networks: A gray-box modeling approach. J. Opt. Commun. Netw. 2023, 15, 830–838. [Google Scholar] [CrossRef]
- Yang, X.; Sun, C.; Charlet, G.; Tornatore, M.; Pointurier, Y. Digital-twin-based active input refinement for insertion loss estimation and QoT optimization in C and C + L networks. J. Opt. Commun. Netw. 2024, 16, 1261–1274. [Google Scholar] [CrossRef]
- Ghasrizadeh, S.; Khare, P.; Costa, N.; Ruiz, M.; Napoli, A.; Pedro, J.; Velasco, L. Digital Twin-Assisted Lightpath Provisioning and Nonlinear Mitigation in C+L+S Multiband Optical Networks. Sensors 2024, 24, 8054. [Google Scholar] [CrossRef] [PubMed]
- Khare, P.; Costa, N.; Pedro, J.; Napoli, A.; Arpanaei, F.; Comellas, J.; Ruiz, M.; Velasco, L. SSMS: A Split Step MultiBand Simulation Software. In Proceedings of the IEEE International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 2–6 July 2023. [Google Scholar]
- Khare, P.; Ghasrizadeh, S.; Ruiz, M.; Velasco, L. IQ Constellation Samples from Simulation of 16-QAM Multi-Band Optical Transmission Systems; CORA Repositori de Dades de Recerca: Barcelona, Spain, 2025. [Google Scholar]
- Liu, X. Adaptive higher-order split-step Fourier algorithm for simulating lightwave propagation in optical fiber. Opt. Commun. 2009, 282, 1435–1439. [Google Scholar]
- Bouguila, N.; Fao, W. Mixture Models and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Proakis, J.; Salehi, M. Digital Communications, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2007. [Google Scholar]
- Ferrari, A.; Napoli, A.; Fischer, J.; Costa, N.; D’Amico, A.; Pedro, J.; Forysiak, W.; Pincemin, E.; Lord, A.; Stavdas, A.; et al. Assessment on the Achievable Throughput of Multi-Band ITU-T G.652.D Fiber Transmission Systems. J. Light. Technol. 2020, 38, 4279–4291. [Google Scholar]
- Lasagni, C.; Serena, P.; Bononi, A.; Antona, J. A Generalized Raman Scattering Model for Real-Time SNR Estimation of Multi-Band Systems. J. Light. Technol. 2023, 41, 3407–3416. [Google Scholar] [CrossRef]
S Band | C Band | L Band | |
---|---|---|---|
Wavelength range [nm] | 1486.5–1530.0 | 1530.4–1568.4 | 1568.8–1621.5 |
Bandwidth [THz] | 5.7 | 4.75 | 6.2 |
Num. of channels (Ids) | 116 (1–116) | 96 (117–212) | 125 (213–337) |
Type of amplifier | TDFA | EDFA | EDFA |
Amplifier noise figure [dB] | 6.5 | 5 | 5 |
Nonlinear coefficient range [(W m)–1] | 1.31–1.41 | 1.24–1.31 | 1.13–1.23 |
Dispersion range [ps/nm/km] | 12.55–15.58 | 15.60–18.02 | 18.1–21.69 |
Attenuation range (dB/km) | 0.19–0.21 | 0.18–0.19 | 0.18–0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khare, P.; Costa, N.; Ruiz, M.; Napoli, A.; Comellas, J.; Pedro, J.; Velasco, L. Simulation and Modelling of C+L+S Multiband Optical Transmission for the OCATA Time Domain Digital Twin. Sensors 2025, 25, 1948. https://doi.org/10.3390/s25061948
Khare P, Costa N, Ruiz M, Napoli A, Comellas J, Pedro J, Velasco L. Simulation and Modelling of C+L+S Multiband Optical Transmission for the OCATA Time Domain Digital Twin. Sensors. 2025; 25(6):1948. https://doi.org/10.3390/s25061948
Chicago/Turabian StyleKhare, Prasunika, Nelson Costa, Marc Ruiz, Antonio Napoli, Jaume Comellas, Joao Pedro, and Luis Velasco. 2025. "Simulation and Modelling of C+L+S Multiband Optical Transmission for the OCATA Time Domain Digital Twin" Sensors 25, no. 6: 1948. https://doi.org/10.3390/s25061948
APA StyleKhare, P., Costa, N., Ruiz, M., Napoli, A., Comellas, J., Pedro, J., & Velasco, L. (2025). Simulation and Modelling of C+L+S Multiband Optical Transmission for the OCATA Time Domain Digital Twin. Sensors, 25(6), 1948. https://doi.org/10.3390/s25061948