New Method of Impact Localization on Plate-like Structures Using Deep Learning and Wavelet Transform
Abstract
:1. Introduction
2. Experimental Setup and Results
3. Preparing Input Datasets for CNN Models
Data Augmentation
4. Impact Event Localization and Classification Using the CNN
4.1. Designed CNN Model
4.2. Evaluation of Model Performance
4.3. Results and Discussion of Impact Identification Models Using Two Sensors
4.4. Results and Discussion of Impact Identification Model Using Four Sensors
5. Conclusions and Future Work
5.1. Conclusions
5.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2nd ed.; Elsevier Academic Press: Waltham, MA, USA, 2014; ISBN 978-0-12-418691-0. [Google Scholar]
- Fu, T.; Liu, Y.; Lau, K.T.; Leng, J. Identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors. Compos. Part B Eng. 2014, 66, 420–429. [Google Scholar] [CrossRef]
- Salinas, V.; Vargas, Y.; Ruzzante, J.; Gaete, L. Localization algorithm for acoustic emission. Phys. Procedia 2010, 3, 863–871. [Google Scholar] [CrossRef]
- Lu, Y.; Ye, L.; Su, Z. Crack identification in aluminum plates using Lamb wave signals of a PZT sensor network. Smart Mater. Struct. 2016, 15, 839–849. [Google Scholar] [CrossRef]
- Migot, A.; Naser, H.N.H.; Ugla, A.A.; Giurgiutiu, V. Investigations of Fatigue Crack Detection Using Local Vibration Techniques: Numerical and Experimental Studies. J. Nondestruct. Eval. 2023, 42, 12. [Google Scholar] [CrossRef]
- Kundu, T.; Das, S.; Jata, K.V. Point of impact prediction in isotropic and anisotropic plates from the acoustic emission data. J. Acoust. Soc. Am. 2007, 122, 2057–2066. [Google Scholar] [CrossRef] [PubMed]
- Migot, A.; Bhuiyan, M.Y.; Giurgiutiu, V. Impact localization on composite plates using two developed imaging methods. In Active and Passive Smart Structures and Integrated Systems XIV; SPIE: Bellingham, WA, USA, 2020; pp. 189–200. [Google Scholar]
- Salamone, S.; Bartoli, I.; di Leo, P.; di Scala, F.L.; Ajovalasit, A.; D’Acquisto, L.; Rhymer, J.; Kim, H. High-velocity impact location on aircraft panels using macro-fiber composite piezoelectric rosettes. J. Intell. Mater. Syst. Struct. 2010, 21, 887–896. [Google Scholar] [CrossRef]
- Ciampa, F.; Meo, M. Impact detection in anisotropic materials using a time reversal approach. Struct. Health Monit. 2012, 11, 43–49. [Google Scholar] [CrossRef]
- Migot, A.; Giurgiutiu, V. Impact localization on a composite plate with unknown material properties using PWAS transducers and wavelet transform. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017; Volume 58448, p. V009T17A002. [Google Scholar]
- Kundu, T.; Das, S.; Jata, K.V. Locating point of impact in anisotropic fiber-reinforced composite plates. Ultrasonics 2008, 48, 193–201. [Google Scholar] [CrossRef]
- Kundu, T.; Yang, X.; Nakatani, H.; Takeda, N. A two-step hybrid technique for accurately localizing acoustic sources in anisotropic structures without knowing their material properties. Ultrasonics 2015, 56, 271–278. [Google Scholar] [CrossRef]
- Sen, N.; Kundu, T. A new wavefront shape-based approach for acoustic source localization in an anisotropic plate without knowing its material properties. Ultrasonics 2018, 87, 20–32. [Google Scholar] [CrossRef]
- Prosser, W.H.; Hamstad, M.A.; Gary, J.; O’Gallagher, A. Reflections of AE Waves in Finite Plates: Finite Element Modeling and Experimental Measurements. J. Acoust. Emiss. 1999, 17, 37–47. [Google Scholar]
- Achdjian, H.; Moulin, E.; Benmeddour, F.; Assaad, J.; Chehami, L. Source Localization in a Reverberant Plate Using Average Coda Properties and Early Signal Strength. Acta Acust. United Acust. 2014, 100, 834–841. [Google Scholar] [CrossRef]
- Ebrahimkhanlou, A.; Salamone, S. Acoustic emission source localization in thin metallic plates: A single-sensor approach based on based on multimodal edge reflections. Ultrasonics 2017, 78, 134–145. [Google Scholar] [CrossRef]
- Yue, N.; Sharif Khodaei, Z. Assessment of impact detection techniques for aeronautical application: ANN vs. LSSVM. J. Multiscale Model. 2016, 7, 1640005. [Google Scholar] [CrossRef]
- Jierula, A.; Wu, C.; Kali, A.; Fu, Z. A Review of Acoustic Emission Source Localization Techniques in Different Dimensions. Appl. Sci. 2024, 14, 8684. [Google Scholar] [CrossRef]
- Cheng, L.; Xin, H.; Groves, R.M.; Veljkovic, M. Acoustic emission source location using Lamb wave propagation simulation and artificial neural network for I-shaped steel girder. Construct. Build. Mater. 2021, 273, 121706. [Google Scholar] [CrossRef]
- LeClerc, J.R.; Worden, K.; Staszewski, W.J.; Haywood, J. Impact detection in an aircraft composite panel—A neural-network approach. J. Sound Vib. 2007, 299, 672–682. [Google Scholar] [CrossRef]
- Sharif-Khodaei, Z.; Ghajari, M.; Aliabadi, M.H. Determination of impact location on composite stiffened panels. Smart Mater. Struct. 2012, 21, 105026. [Google Scholar] [CrossRef]
- Seno, A.H.; Aliabadi, M. Impact localization in composite plates of different stiffness impactors under simulated environmental and operational conditions. Sensors 2019, 19, 3659. [Google Scholar] [CrossRef]
- Xu, Q. A comparison study of extreme learning machine and least squares support vector machine for structural impact localization. Math. Prob. Eng. 2014, 1, 816518. [Google Scholar] [CrossRef]
- Sause, M.G.R.; Schmitt, S.; Kalafat, S. Failure load prediction for fiber-reinforced composites based on acoustic emission. Compos. Sci. Technol. 2018, 164, 24–33. [Google Scholar] [CrossRef]
- Datta, A.; Augustin, M.J.; Gupta, N.; Viswamurthy, S.R.; Gaddikeri, K.M.; Sundaram, R. Impact localization and severity estimation on a composite structure using fiber Bragg grating sensors by least square support vector regression. IEEE Sens. J. 2019, 19, 4463–4470. [Google Scholar] [CrossRef]
- Mumuni, A.; Mumuni, F. Data augmentation: A comprehensive survey of modern approaches. Array 2022, 16, 100258. [Google Scholar] [CrossRef]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Alom, M.Z.; Alam, M.; Taha, T.M.; Iftekharuddin, K.M. Object recognition using cellular simultaneous recurrent networks and convolutional neural network. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 2873–2880. [Google Scholar]
- Tabian, I.; Fu, H.; Sharif Khodaei, Z. A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures. Sensors 2019, 19, 4933. [Google Scholar] [CrossRef]
- Ebrahimkhanlou, A.; Salamone, S. Single-Sensor Acoustic Emission Source Localization in Plate-Like Structures Using Deep Learning. Aerospace 2018, 5, 50. [Google Scholar] [CrossRef]
- Feng, B.; Cheng, S.; Deng, K.; Kang, Y. Localization of low-velocity impact in CFRP plate using time-frequency features of guided wave and convolutional neural network. Wave Motion 2023, 119, 103127. [Google Scholar] [CrossRef]
- Wu, S.; Huang, X.; Xu, R.; Yu, W.; Cheng, G. Impact Load Localization Based on Multi-Scale Feature Fusion Convolutional Neural Network. Sensors 2024, 24, 6060. [Google Scholar] [CrossRef]
- Khan, A.; Shin, J.K.; Lim, W.C.; Kim, N.Y.; Kim, H.S. A Deep Learning Framework for Vibration-Based Assessment of Delamination in Smart Composite Laminates. Sensors 2020, 20, 2335. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, W.; Yu, D.; Yang, Q.; Meng, S.; Lyu, Q. Deep Transfer Learning Approach for Localization of Damage Area in Composite Laminates Using Acoustic Emission Signal. Polymers 2023, 15, 1520. [Google Scholar] [CrossRef]
- Hamstad, M.A.; Downs, K.S.; O’Gallagher, A. Practical aspects of acoustic emission source location by a wavelet transform. J. Acoust. Emiss. 2003, 21, 70–94. [Google Scholar]
- Vallen-System, GmbH. Munich, Germany. 2001. Available online: http://www.vallen.de/wavelet/index.html (accessed on 24 August 2024).
- Migot, A.; Saaudi, A.; Giurgiutiu, V. Delamination Depth Detection in Composite Plates Using the Lamb Wave Technique Based on Convolutional Neural Networks. Sensors 2024, 24, 3118. [Google Scholar] [CrossRef] [PubMed]
- Katsidimas, I.; Kostopoulos, V.; Kotzakolios, T.; Nikoletseas, S.E.; Panagiotou, S.H.; Tsakonas, C. An Impact Localization Solution Using Embedded Intelligence—Methodology and Experimental Verification via a Resource-Constrained IoT Device. Sensors 2023, 23, 896. [Google Scholar] [CrossRef] [PubMed]
Impacts | I1 | I2 | I3 | I4 | I5 |
---|---|---|---|---|---|
x/mm | 275 | 625 | 700 | 500 | 50 |
y/mm | 290 | 400 | 300 | 150 | 50 |
Model Layer | Output Shape | Parameters |
---|---|---|
conv2d | (None, 222, 222, 64) | 1792 |
max_pooling2d | (None, 111, 111, 64) | 0 |
conv2d | (None, 109, 109, 32) | 18,464 |
max_pooling2d | (None, 54, 54, 32) | 0 |
dropout | (None, 54, 54, 32) | 0 |
conv2d | (None, 52, 52, 16) | 4624 |
max_pooling2d | (None, 26, 26, 16) | 0 |
dropout | (None, 26, 26, 16) | 0 |
flatten | (None, 10,816) | 0 |
dense | (None, 64) | 692,288 |
dense | (None, 32) | 2080 |
dense | (None, 5) | 133 |
Trainable parameters: 719,381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migot, A.; Saaudi, A.; Giurgiutiu, V. New Method of Impact Localization on Plate-like Structures Using Deep Learning and Wavelet Transform. Sensors 2025, 25, 1926. https://doi.org/10.3390/s25061926
Migot A, Saaudi A, Giurgiutiu V. New Method of Impact Localization on Plate-like Structures Using Deep Learning and Wavelet Transform. Sensors. 2025; 25(6):1926. https://doi.org/10.3390/s25061926
Chicago/Turabian StyleMigot, Asaad, Ahmed Saaudi, and Victor Giurgiutiu. 2025. "New Method of Impact Localization on Plate-like Structures Using Deep Learning and Wavelet Transform" Sensors 25, no. 6: 1926. https://doi.org/10.3390/s25061926
APA StyleMigot, A., Saaudi, A., & Giurgiutiu, V. (2025). New Method of Impact Localization on Plate-like Structures Using Deep Learning and Wavelet Transform. Sensors, 25(6), 1926. https://doi.org/10.3390/s25061926