Optomechanical Analysis of Gait in Patients with Ankylosing Spondylitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.3.1. Demographic and Anthropometric Data
2.3.2. Gait Analysis
Instrumentation and Setup
Protocol for Gait Analysis
2.4. Data Analysis
2.4.1. Pedobarography
2.4.2. Motion Capture System
2.5. Statistical Analysis
3. Results
3.1. Demographic and Anthropometric Characteristics
3.2. Gait Parameters
3.3. Analysis of Covariance
3.4. Correlation Analysis
4. Discussion
4.1. Findings
4.2. Study Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zochling, J.; van der Heijde, D.; Burgos-Vargas, R.; Collantes, E.; Davis, J.C.; Dijkmans, B.; Dougados, M.; Géher, P.; Inman, R.D.; Khan, M.A.; et al. ASAS/EULAR Recommendations for the Management of Ankylosing Spondylitis. Ann. Rheum. Dis. 2006, 65, 442–452. [Google Scholar] [CrossRef] [PubMed]
- de Winter, J.J.; van Mens, L.J.; van der Heijde, D.; Landewé, R.; Baeten, D.L. Prevalence of Peripheral and Extra-Articular Disease in Ankylosing Spondylitis versus Non-Radiographic Axial Spondyloarthritis: A Meta-Analysis. Arthritis Res. Ther. 2016, 18, 196. [Google Scholar] [CrossRef] [PubMed]
- Feldtkeller, E.; Khan, M.A.; van der Heijde, D.; van der Linden, S.; Braun, J. Age at Disease Onset and Diagnosis Delay in HLA-B27 Negative vs. Positive Patients with Ankylosing Spondylitis. Rheumatol. Int. 2003, 23, 61–66. [Google Scholar] [CrossRef]
- Stone, M.; Warren, R.W.; Bruckel, J.; Cooper, D.; Cortinovis, D.; Inman, R.D. Juvenile-Onset Ankylosing Spondylitis Is Associated with Worse Functional Outcomes than Adult-Onset Ankylosing Spondylitis. Arthritis Rheum 2005, 53, 445–451. [Google Scholar] [CrossRef]
- Dean, L.E.; Jones, G.T.; MacDonald, A.G.; Downham, C.; Sturrock, R.D.; Macfarlane, G.J. Global Prevalence of Ankylosing Spondylitis. Rheumatology 2014, 53, 650–657. [Google Scholar] [CrossRef]
- van der Heijde, D.M.; Revicki, D.A.; Gooch, K.L.; Wong, R.L.; Kupper, H.; Harnam, N.; Thompson, C.; Sieper, J. ATLAS Study Group Physical Function, Disease Activity, and Health-Related Quality-of-Life Outcomes after 3 Years of Adalimumab Treatment in Patients with Ankylosing Spondylitis. Arthritis Res. Ther. 2009, 11, R124. [Google Scholar] [CrossRef] [PubMed]
- Swinkels, A.; Dolan, P. Spinal Position Sense and Disease Progression in Ankylosing Spondylitis: A Longitudinal Study. Spine 2004, 29, 1240–1245. [Google Scholar] [CrossRef]
- Bot, S.D.; Caspers, M.; Van Royen, B.J.; Toussaint, H.M.; Kingma, I. Biomechanical Analysis of Posture in Patients with Spinal Kyphosis Due to Ankylosing Spondylitis: A Pilot Study. Rheumatology 1999, 38, 441–443. [Google Scholar] [CrossRef]
- Vander Cruyssen, B.; Muñoz-Gomariz, E.; Font, P.; Mulero, J.; De Vlam, K.; Boonen, A.; Vazquez-Mellado, J.; Flores, D.; Vastesaeger, N.; Collantes, E. Hip Involvement in Ankylosing Spondylitis: Epidemiology and Risk Factors Associated with Hip Replacement Surgery. Rheumatology 2010, 49, 73–81. [Google Scholar] [CrossRef]
- Aydog, E.; Depedibi, R.; Bal, A.; Eksioglu, E.; Unlü, E.; Cakci, A. Dynamic Postural Balance in Ankylosing Spondylitis Patients. Rheumatology 2006, 45, 445–448. [Google Scholar] [CrossRef]
- Koca, T.T.; Göğebakan, H.; Koçyiğit, B.F.; Nacitarhan, V.; Yildir, C.Z. Foot Functions in Ankylosing Spondylitis. Clin. Rheumatol. 2019, 38, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Sahin, N.; Ozcan, E.; Baskent, A.; Karan, A.; Kasikcioglu, E. Muscular Kinetics and Fatigue Evaluation of Knee Using by Isokinetic Dynamometer in Patients with Ankylosing Spondylitis. Acta Reum. Port. 2011, 36, 252–259. [Google Scholar]
- Turan, Y.; Duruöz, M.T.; Bal, S.; Guvenc, A.; Cerrahoglu, L.; Gurgan, A. Assessment of Fatigue in Patients with Ankylosing Spondylitis. Rheumatol. Int. 2007, 27, 847–852. [Google Scholar] [CrossRef]
- Park, Y.G.; Goh, T.S.; Kim, D.S.; Jung, S.J.; Lee, J.S. Relationships between Clinical Status and Gait Parameters in Ankylosing Spondylitis. Clin. Orthop. Surg. 2023, 15, 249. [Google Scholar] [CrossRef] [PubMed]
- Springer, S.; Yogev Seligmann, G. Validity of the Kinect for Gait Assessment: A Focused Review. Sensors 2016, 16, 194. [Google Scholar] [CrossRef]
- Timmi, A.; Coates, G.; Fortin, K.; Ackland, D.; Bryant, A.L.; Gordon, I.; Pivonka, P. Accuracy of a Novel Marker Tracking Approach Based on the Low-Cost Microsoft Kinect v2 Sensor. Med. Eng. Phys. 2018, 59, 63–69. [Google Scholar] [CrossRef]
- Eltoukhy, M.; Oh, J.; Kuenze, C.; Signorile, J. Improved Kinect-Based Spatiotemporal and Kinematic Treadmill Gait Assessment. Gait Posture 2017, 51, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; McGorry, R.W.; Chou, L.-S.; Lin, J.-H.; Chang, C.-C. Accuracy of the Microsoft Kinect for Measuring Gait Parameters during Treadmill Walking. Gait Posture 2015, 42, 145–151. [Google Scholar] [CrossRef]
- Tanaka, R.; Takimoto, H.; Yamasaki, T.; Higashi, A. Validity of Time Series Kinematical Data as Measured by a Markerless Motion Capture System on a Flatland for Gait Assessment. J. Biomech. 2018, 71, 281–285. [Google Scholar] [CrossRef]
- Orlin, M.N.; McPoil, T.G. Plantar Pressure Assessment. Phys. Ther. 2000, 80, 399–409. [Google Scholar] [CrossRef]
- Rosário, J.L.P. A Review of the Utilization of Baropodometry in Postural Assessment. J. Bodyw. Mov. Ther. 2014, 18, 215–219. [Google Scholar] [CrossRef]
- Soulard, J.; Vaillant, J.; Agier, C.-T.; Vuillerme, N. Gait Characteristics in Patients with Ankylosing Spondylitis: A Systematic Review. Clin. Exp. Rheumatol. 2021, 39, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Zebouni, L.; Helliwell, P.S.; Howe, A.; Wright, V. Gait Analysis in Ankylosing Spondylitis. Ann. Rheum. Dis. 1992, 51, 898–899. [Google Scholar] [CrossRef] [PubMed]
- Mangone, M.; Scettri, P.; Paoloni, M.; Procaccianti, R.; Spadaro, A.; Santilli, V. Pelvis-Shoulder Coordination during Level Walking in Patients with Ankylosing Spondylitis. Gait Posture 2011, 34, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Del Din, S.; Carraro, E.; Sawacha, Z.; Guiotto, A.; Bonaldo, L.; Masiero, S.; Cobelli, C. Impaired Gait in Ankylosing Spondylitis. Med. Biol. Eng. Comput. 2011, 49, 801–809. [Google Scholar] [CrossRef]
- Zhang, G.; Li, J.; Xia, Z.; Xu, W. The Gait Deviations of Ankylosing Spondylitis with Hip Involvement. Clin. Rheumatol. 2019, 38, 1163–1175. [Google Scholar] [CrossRef]
- Barkham, N.; Coates, L.C.; Keen, H.; Hensor, E.; Fraser, A.; Redmond, A.; Cawkwell, L.; Emery, P. Double-Blind Placebo-Controlled Trial of Etanercept in the Prevention of Work Disability in Ankylosing Spondylitis. Ann. Rheum. Dis. 2010, 69, 1926–1928. [Google Scholar] [CrossRef]
- Mesci, E.; Mesci, N.; İçağasıoğlu, A. FRI0437 Effects of Ankylosing Spondylitis on Plantar Pressure Distribution; BMJ Publishing Group Ltd. and European League Against Rheumatism: London, UK, 2017; p. 652. [Google Scholar]
- Aydin, E.; Turan, Y.; Tastaban, E.; Kurt Omurlu, I.; Sendur, O.F. Plantar Pressure Distribution in Patients with Ankylosing Spondylitis. Clin. Biomech. 2015, 30, 238–242. [Google Scholar] [CrossRef]
- Yildirim, T.; Ersoy, Y. The Use of Baropodometry for the Evaluation of Plantar Pressure Distribution in Ankylosing Spondylitis. Ann. Med. Res. 2021, 24, 0059–0062. [Google Scholar]
- Erdfelder, E.; Faul, F.; Buchner, A. GPOWER: A General Power Analysis Program. Behav. Res. Methods Instrum. Comput. 1996, 28, 1–11. [Google Scholar] [CrossRef]
- soft returnvan der Linden, S.; Valkenburg, H.A.; Cats, A. Evaluation of Diagnostic Criteria for Ankylosing Spondylitis. A Proposal for Modification of the New York Criteria. Arthritis Rheum. 1984, 27, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Geerse, D.J.; Coolen, B.H.; Roerdink, M. Kinematic Validation of a Multi-Kinect v2 Instrumented 10-Meter Walkway for Quantitative Gait Assessments. PLoS ONE 2015, 10, e0139913. [Google Scholar] [CrossRef] [PubMed]
- Do, T. Mouse Without Borders. Available online: https://www.microsoft.com/en-us/garage/wall-of-fame/mouse-without-borders/ (accessed on 20 January 2025).
- Giacomozzi, C. Potentialities and Criticalities of Plantar Pressure Measurements in the Study of Foot Biomechanics: Devices, Methodologies and Applications. In Biomechanics in Applications; Klika, V., Ed.; InTech: Houston, TX, USA, 2011; ISBN 978-953-307-969-1. [Google Scholar]
- RSscan International. Installation Guide and User Manual Footscan® System; RSscan International: Olen, Belgium, 2017. [Google Scholar]
- Kinectron. Available online: https://kinectron.github.io/#/ (accessed on 20 January 2025).
- Gruić, I.; Katović, D.; Bušić, A.; Bronzin, T.; Medved, V.; Mišigoj-Duraković, M. Construction and Validation of Protocol for Digital Measurement of Human Body. In Sport Science Research and Technology Support; Cabri, J., Pezarat-Correia, P., Vilas-Boas, J., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Germany, 2019; Volume 975, pp. 86–99. ISBN 978-3-030-14525-5. [Google Scholar]
- Ryselis, K.; Petkus, T.; Blažauskas, T.; Maskeliūnas, R.; Damaševičius, R. Multiple Kinect Based System to Monitor and Analyze Key Performance Indicators of Physical Training. Hum.-Centric Comput. Inf. Sci. 2020, 10, 51. [Google Scholar] [CrossRef]
- Córdova-Esparza, D.-M.; Terven, J.R.; Jiménez-Hernández, H.; Vázquez-Cervantes, A.; Herrera-Navarro, A.-M.; Ramírez-Pedraza, A. Multiple Kinect V2 Calibration. Automatika 2016, 57, 810–821. [Google Scholar] [CrossRef]
- Guffanti, D.; Brunete, A.; Hernando, M.; Rueda, J.; Navarro Cabello, E. The Accuracy of the Microsoft Kinect V2 Sensor for Human Gait Analysis. A Different Approach for Comparison with the Ground Truth. Sensors 2020, 20, 4405. [Google Scholar] [CrossRef]
- Rössler, R.; Wagner, J.; Knaier, R.; Rommers, N.; Kressig, R.W.; Schmidt-Trucksäss, A.; Hinrichs, T. Spatiotemporal Gait Characteristics across the Adult Lifespan: Reference Values from a Healthy Population–Analysis of the COmPLETE Cohort Study. Gait Posture 2024, 109, 101–108. [Google Scholar] [CrossRef]
- Aboutorabi, A.; Arazpour, M.; Bahramizadeh, M.; Hutchins, S.W.; Fadayevatan, R. The Effect of Aging on Gait Parameters in Able-Bodied Older Subjects: A Literature Review. Aging Clin. Exp. Res. 2016, 28, 393–405. [Google Scholar] [CrossRef]
- Boyer, K.A.; Johnson, R.T.; Banks, J.J.; Jewell, C.; Hafer, J.F. Systematic Review and Meta-Analysis of Gait Mechanics in Young and Older Adults. Exp. Gerontol. 2017, 95, 63–70. [Google Scholar] [CrossRef]
- Vergara, M.E.; O’Shea, F.D.; Inman, R.D.; Gage, W.H. Postural Control Is Altered in Patients with Ankylosing Spondylitis. Clin. Biomech. 2012, 27, 334–340. [Google Scholar] [CrossRef]
- Millner, J.R.; Barron, J.S.; Beinke, K.M.; Butterworth, R.H.; Chasle, B.E.; Dutton, L.J.; Lewington, M.A.; Lim, E.G.; Morley, T.B.; O’Reilly, J.E.; et al. Exercise for Ankylosing Spondylitis: An Evidence-Based Consensus Statement. Semin. Arthritis Rheum. 2016, 45, 411–427. [Google Scholar] [CrossRef]
- Soulard, J.; Vaillant, J.; Baillet, A.; Gaudin, P.; Vuillerme, N. Gait and Axial Spondyloarthritis: Comparative Gait Analysis Study Using Foot-Worn Inertial Sensors. JMIR mHealth uHealth 2021, 9, e27087. [Google Scholar] [CrossRef] [PubMed]
Parameter | Kinect v2 |
---|---|
Stride length (m) | Distance between the right ankle markers in the Z-axis for two consecutive right foot strikes. Foot strike was identified as the moment when the distance between the ankle marker and spine base marker reached the maximum. The ankle marker was used due to its better tracking performance than the foot marker. |
Hip joint flexion/extension angle (°) | Angle between the “hip-knee vector” and the “Y axis” in the Y-Z plane. |
Hip joint adduction/abduction angle (°) | Angle between the “hip-knee vector” and the “Y axis” in the X-Y plane. |
Knee joint flexion/extension angle (°) | Angle between the “knee-hip vector” and the “knee-ankle vector” in the Y-Z plane. |
Ankle joint dorsiflexion/plantarflexion angle (°) | Angle between the “ankle-knee vector” and the “ankle-foot vector” in the Y-Z plane. |
AS | HC | AS vs. HC | ||
---|---|---|---|---|
Variable | Mean ± SD | Mean ± SD | p-Value (t-Test) | Effect Size |
Age (years) | 47.42 ± 9.39 | 38.67 ± 6.64 | 0.02 * | 1.07 |
Height (cm) | 173.33 ± 5.69 | 178.50 ± 9.08 | 0.11 | 0.67 |
Weight (kg) | 87.83 ± 15.57 | 77.19 ± 12.47 | 0.08 | 0.75 |
Right foot length (cm) | 28.77 ± 1.60 | 28.78 ± 1.94 | 0.48 | 0.01 |
Right foot width (cm) | 10.78 ± 0.44 | 10.62 ± 0.61 | 0.48 | 0.30 |
Left foot length (cm) | 29.25 ± 1.37 | 28.63 ± 2.02 | 0.39 | 0.36 |
Left foot width (cm) | 10.80 ± 0.58 | 10.62 ± 0.63 | 0.48 | 0.30 |
AS | HC | AS vs. HC | ||
---|---|---|---|---|
Variable | Mean ± SD | Mean ± SD | p-Value (t-Test) | Effect Size |
Forefoot peak force (N) | 886.64 ± 148.66 | 818.24 ± 119.64 | 0.23 | 0.51 |
Midfoot peak force (N) | 235.35 ± 111.03 | 149.94 ± 76.84 | 0.04 * | 0.90 |
Heel peak force (N) | 477.31 ± 97.02 | 475.87 ± 77.03 | 0.97 | 0.02 |
Peak force (N) | 1009.56 ± 176.05 | 911.36 ± 121.23 | 0.13 | 0.65 |
Q1 (%) | 23.16 ± 4.56 | 25.56 ± 3.43 | 0.16 | 0,60 |
Q2 (%) | 22.47 ± 1.67 | 25.59 ± 3.08 | 0.01 * | 1.26 |
Q3 (%) | 27.22 ± 4.66 | 24.81 ± 3.86 | 0.18 | 0.56 |
Q4 (%) | 27.17 ± 4.00 | 24.04 ± 3.38 | 0.05 * | 0.85 |
Stride length (m) | 1.13 ± 0.12 | 1.27 ± 0.11 | 0.01 * | 1.22 |
Right hip flexion/extension (°) | 18.30 ± 5.97 | 18.71 ± 3.99 | 0.84 | 0.08 |
Left hip flexion/extension (°) | 24.40 ± 4.90 | 24.46 ± 3.60 | 0.97 | 0.01 |
Right hip adduction/abduction (°) | 20.55 ± 3.56 | 22.72 ± 7.41 | 0.37 | 0.37 |
Left hip adduction/abduction (°) | 23.33 ± 8.26 | 23.28 ± 7.49 | 0.99 | 0.01 |
Right knee flexion/extension (°) | 37.92 ± 9.45 | 41.02 ± 8.71 | 0.41 | 0.34 |
Left knee flexion/extension (°) | 49.96 ± 13.51 | 49.05 ± 14.16 | 0.87 | 0.07 |
Right ankle dorsiflexion/plantarflexion (°) | 55.80 ± 15.61 | 51.14 ± 14.89 | 0.46 | 0.31 |
Left ankle dorsiflexion/plantarflexion (°) | 59.72 ± 16.02 | 58.52 ± 11.16 | 0.83 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brnić, V.; Grubišić, F.; Grazio, S.; Mirković, M.; Gruić, I. Optomechanical Analysis of Gait in Patients with Ankylosing Spondylitis. Sensors 2025, 25, 1797. https://doi.org/10.3390/s25061797
Brnić V, Grubišić F, Grazio S, Mirković M, Gruić I. Optomechanical Analysis of Gait in Patients with Ankylosing Spondylitis. Sensors. 2025; 25(6):1797. https://doi.org/10.3390/s25061797
Chicago/Turabian StyleBrnić, Vedran, Frane Grubišić, Simeon Grazio, Maja Mirković, and Igor Gruić. 2025. "Optomechanical Analysis of Gait in Patients with Ankylosing Spondylitis" Sensors 25, no. 6: 1797. https://doi.org/10.3390/s25061797
APA StyleBrnić, V., Grubišić, F., Grazio, S., Mirković, M., & Gruić, I. (2025). Optomechanical Analysis of Gait in Patients with Ankylosing Spondylitis. Sensors, 25(6), 1797. https://doi.org/10.3390/s25061797