Non-Pharmacological Mitigation of Acute Mental Stress-Induced Sympathetic Arousal: Comparison Between Median Nerve Stimulation and Auricular Vagus Nerve Stimulation
Abstract
:1. Introduction
2. Methods
2.1. Experimental Dataset and Protocol
2.2. Data Processing
- (1)
- (2)
- (3)
- (1)
- Heart rate (HR) as 60 divided by the instantaneous heart period (in seconds, derived as the time interval between the R waves in the ECG pertaining to current and next beats).
- (2)
- Pre-ejection period (PEP) as the time interval between the R wave in the ECG and the AO point in the SCG.
- (3)
- PPG amplitude (APPG) as the amplitude of the PPG beat.
- (4)
- Pulse arrival time (PAT) as the time interval between the R wave in the ECG and the foot of the PPG.
- (5)
- Pulse transit time (PTT) as the time interval between the AO point in the SCG and the foot of the PPG.
- (6)
- Left ventricular ejection time (LVET) as the time interval between the AO point and the AC point in the SCG.
- (1)
- We resampled the physio-markers at a 1 Hz sampling rate and then smoothed them using a 30 s moving-average filter.
- (2)
- We normalized each physio-marker time series using the z-score normalization.
- (3)
- We de-trended each physio-marker time series to remove drifts in each experiment by (i) calculating the average physio-marker values pertaining to the initial and final rest periods and (ii) subtracting the linear interpolation of these average physio-marker values from the experiment period. In this way, each experiment was de-trended separately.
- (4)
- We segmented the physio-marker time series into the two experiments (“Experiment 1” and “Experiment 2”).
2.3. Construction of Synthetic Multi-Modal Variable (SMV)
2.4. Comparison Between MNS vs. AVNS
- (1)
- Explainability: The “Stress + STIM” period in an experiment is classified as explainable with respect to the SMV (or a physio-marker) if the mean value of the SMV (or the physio-marker) is positive. The “STIM” period in an experiment is classified as explainable with respect to the SMV (or a physio-marker) if the mean value of the SMV (or the physio-marker) is negative. An experiment is classified as explainable with respect to the SMV (or a physio-marker) if both “Stress + STIM” and “STIM” periods therein are explainable with respect to the SMV (or the physio-marker). Hence, the explainability quantifies the degree to which the SMV (or a physio-marker) responds to acute mental stressors as well as MNS and AVNS in a physiologically explainable way.
- (2)
- Stimulation consistency: For an explainable experiment, its stimulation consistency with respect to the SMV (or a physio-marker) is defined as the percentage of explainable data points pertaining to the SMV (or a physio-marker) in the “STIM” period of the experiment. Hence, the stimulation consistency quantifies the degree to which the SMV (or a physio-marker) response is maintained in the explainable (i.e., negative) direction.
- (3)
- Stimulation sensitivity: For an explainable experiment, its stimulation sensitivity with respect to the SMV (or a physio-marker) is defined as the absolute mean value of the SMV (or the physio-marker) in the “STIM” period of the experiment. Hence, the stimulation sensitivity quantifies the degree to which MNS or AVNS can change the SMV (or a physio-marker).
- (4)
- Stimulation effectiveness: For an explainable experiment, its stimulation effectiveness with respect to the SMV (or a physio-marker) is defined as the ratio between the absolute mean value of the SMV (or the physio-marker) in the “STIM” period of the experiment (i.e., the stimulation sensitivity) to the sum of the mean value of the SMV (or the physio-marker) in the “Stress-STIM” and “STIM” periods. Under the plausible assumption that the mean value of the SMV (or a physio-marker) in the “Stress-STIM” period is its acute stress-induced arousal minus its mitigation due to MNS or AVNS, and that the mitigation due to MNS or AVNS remains identical in both “Stress-STIM” and “STIM” periods, the stimulation effectiveness quantifies the degree to which MNS or AVNS can mitigate the acute stress-induced arousal pertaining to the SMV (or a physio-marker).
3. Results
4. Discussion
4.1. MNS vs. AVNS: Comparable Efficacy in the Mitigation of Acute Stress-Induced Arousal
4.2. MNS vs. AVNS: Mitigation of Acute Stress-Induced Arousal via Distinct Physio-Markers
4.3. Potential of MNS in Wearable-Enabled Acute Stress Management
4.4. MNS and AVNS: Weakness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ernst, H.; Scherpf, M.; Pannasch, S.; Helmert, J.R.; Malberg, H.; Schmidt, M. Assessment of the human response to acute mental stress-An overview and a multimodal study. PLoS ONE 2023, 18, e0294069. [Google Scholar] [CrossRef] [PubMed]
- van Oort, J.; Tendolkar, I.; Hermans, E.; Mulders, P.; Beckmann, C.; Schene, A.; Fernández, G.; van Eijndhoven, P.F. How the Brain Connects in Response to Acute Stress: A Review at the Human Brain Systems Level. Neurosci. Biobehav. Rev. 2017, 83, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Moberg, E.; Kollind, M.; Lins, P.E.; Adamson, U. Acute mental stress impairs insulin sensitivity in IDDM patients. Diabetologia 1994, 37, 247–251. [Google Scholar] [CrossRef]
- Garfin, D.R.; Thompson, R.R.; Holman, E.A. Acute Stress and Subsequent Health Outcomes: A Systematic Review. J. Psychosom. Res. 2018, 112, 107–113. [Google Scholar] [CrossRef]
- Von Känel, R. Acute mental stress and hemostasis: When physiology becomes vascular harm. Thromb. Res. 2015, 135 (Suppl. S1), S52–S55. [Google Scholar] [CrossRef] [PubMed]
- Hammen, C.; Kim, E.Y.; Eberhart, N.K.; Brennan, P.A. Chronic and acute stress and the prediction of major depression in women. Depress. Anxiety 2009, 26, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Poitras, V.J.; Pyke, K.E. The impact of acute mental stress on vascular endothelial function: Evidence, mechanisms and importance. Int. J. Psychophysiol. 2013, 88, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.; Ginty, A.T.; Der, G.; Hunt, K.; Benzeval, M.; Phillips, A.C. Increased blood pressure reactions to acute mental stress are associated with 16-year cardiovascular disease mortality. Psychophysiology 2012, 49, 1444–1448. [Google Scholar] [CrossRef]
- Gosain, R.; Gage-Bouchard, E.; Ambrosone, C.; Repasky, E.; Gandhi, S. Stress reduction strategies in breast cancer: Review of pharmacologic and non-pharmacologic based strategies. Semin. Immunopathol. 2020, 42, 719–734. [Google Scholar] [CrossRef]
- Travin, M.I.; Wexler, J.P. Pharmacological stress testing. Semin. Nucl. Med. 1999, 29, 298–318. [Google Scholar] [CrossRef] [PubMed]
- Coventry, P.A.; Meader, N.; Melton, H.; Temple, M.; Dale, H.; Wright, K.; Cloitre, M.; Karatzias, T.; Bisson, J.; Roberts, N.P.; et al. Psychological and pharmacological interventions for posttraumatic stress disorder and comorbid mental health problems following complex traumatic events: Systematic review and component network meta-analysis. PLoS Med. 2020, 17, e1003262. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, A.; Williams, T.; Nikolakopoulou, A.; Salanti, G.; Chaimani, A.; Ipser, J.; Cowen, P.J.; Geddes, J.R.; Stein, D.J. Comparative efficacy and acceptability of pharmacological treatments for post-traumatic stress disorder in adults: A network meta-analysis. Psychol. Med. 2018, 48, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.R. Stress Management in Work Settings: A Critical Review of the Health Effects. Am. J. Health Promot. 1996, 11, 112–135. [Google Scholar] [CrossRef]
- Bothe, D.A.; Grignon, J.B.; Olness, K.N. The effects of a stress management intervention in elementary school children. J. Dev. Behav. Pediatr. 2014, 35, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, N.D.; Brown, K.E. Assessing intervention effectiveness for reducing stress in student nurses: Quantitative systematic review. J. Adv. Nurs. 2011, 67, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Gardner, B.; Rose, J.; Mason, O.; Tyler, P.; Cushway, D. Cognitive therapy and behavioural coping in the management of work-related stress: An intervention study. Work Stress 2005, 19, 137–152. [Google Scholar] [CrossRef]
- Sharma, M.; Rush, S.E. Mindfulness-Based Stress Reduction as a Stress Management Intervention for Healthy Individuals: A Systematic Review. J. Evid. Based Complement. Altern. Med. 2014, 19, 271–286. [Google Scholar] [CrossRef]
- Richardson, K.M.; Rothstein, H.R. Effects of Occupational Stress Management Intervention Programs: A Meta-Analysis. J. Occup. Health Psychol. 2008, 13, 69–93. [Google Scholar] [CrossRef] [PubMed]
- Gurel, N.Z.; Huang, M.; Wittbrodt, M.T.; Jung, H.; Ladd, S.L.; Shandhi, M.M.H.; Ko, Y.A.; Shallenberger, L.; Nye, J.A.; Pearce, B.; et al. Quantifying acute physiological biomarkers of transcutaneous cervical vagal nerve stimulation in the context of psychological stress. Brain Stimul. 2020, 13, 47–59. [Google Scholar] [CrossRef]
- Atkinson-Clement, C.; Junor, A.; Kaiser, M. A large-scale online survey of patients and the general public: Preferring safe and noninvasive neuromodulation for mental health. medRxiv 2024. [Google Scholar] [CrossRef]
- Smits, F.M.; Schutter, D.J.L.G.; Van Honk, J.; Geuze, E. Does non-invasive brain stimulation modulate emotional stress reactivity? Soc. Cogn. Affect. Neurosci. 2020, 15, 23–51. [Google Scholar] [CrossRef] [PubMed]
- Baptista, A.F.; Baltar, A.; Okano, A.H.; Moreira, A.; Campos, A.C.P.; Fernandes, A.M.; Brunoni, A.R.; Badran, B.W.; Tanaka, C.; de Andrade, D.C.; et al. Applications of Non-invasive Neuromodulation for the Management of Disorders Related to COVID-19. Front. Neurol. 2020, 11, 573718. [Google Scholar] [CrossRef] [PubMed]
- Subhani, A.R.; Kamel, N.; Saad, M.N.M.; Nandagopal, N.; Kang, K.; Malik, A.S. Mitigation of stress: New treatment alternatives. Cogn. Neurodyn. 2018, 12, 1–20. [Google Scholar] [CrossRef]
- Gurel, N.Z.; Wittbrodt, M.T.; Jung, H.; Shandhi, M.M.H.; Driggers, E.G.; Ladd, S.L.; Huang, M.; Ko, Y.A.; Shallenberger, L.; Beckwith, J.; et al. Transcutaneous cervical vagal nerve stimulation reduces sympathetic responses to stress in posttraumatic stress disorder: A double-blind, randomized, sham controlled trial. Neurobiol. Stress 2020, 13, 100264. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Perez, J.A.; Gazi, A.H.; Rahman, F.N.; Seith, A.; Saks, G.; Sundararaj, S.; Erbrick, R.; Harrison, A.B.; Nichols, C.J.; Modak, M.; et al. Transcutaneous auricular Vagus Nerve Stimulation and Median Nerve Stimulation reduce acute stress in young healthy adults: A single-blind sham-controlled crossover study. Front. Neurosci. 2023, 17, 1213982. [Google Scholar] [CrossRef]
- Lamb, D.G.; Porges, E.C.; Lewis, G.F.; Williamson, J.B. Non-invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with Posttraumatic Stress Disorder and history of mild traumatic brain injury: Preliminary evidence. Front. Med. 2017, 4, 274823. [Google Scholar] [CrossRef]
- Gurel, N.Z.; Jiao, Y.; Wittbrodt, M.T.; Ko, Y.A.; Hankus, A.; Driggers, E.G.; Ladd, S.L.; Shallenberger, L.; Murrah, N.; Huang, M.; et al. Effect of transcutaneous cervical vagus nerve stimulation on the pituitary adenylate cyclase-activating polypeptide (PACAP) response to stress: A randomized, sham controlled, double blind pilot study. Compr. Psychoneuroendocrinol. 2020, 4, 100012. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Ottaviani, C.; Verkuil, B.; Kappen, M.; Baeken, C.; Vanderhasselt, M.A. Effects of non-invasive vagus nerve stimulation on cognitive and autonomic correlates of perseverative cognition. Psychophysiology 2023, 60, e14250. [Google Scholar] [CrossRef]
- Maharjan, A.; Peng, M.; Russell, B.; Cakmak, Y.O. Investigation of the Optimal Parameters of Median Nerve Stimulation Using a Variety of Stimulation Methods and Its Effects on Heart Rate Variability: A Systematic Review. Neuromodul. Technol. Neural Interface 2022, 25, 1268–1279. [Google Scholar] [CrossRef]
- Al-Zamil, M.; Kulikova, N.G.; Minenko, I.A.; Shurygina, I.P.; Petrova, M.M.; Mansur, N.; Kuliev, R.R.; Blinova, V.V.; Khripunova, O.V.; Shnayder, N.A. Comparative Analysis of High-Frequency and Low-Frequency Transcutaneous Electrical Stimulation of the Right Median Nerve in the Regression of Clinical and Neurophysiological Manifestations of Generalized Anxiety Disorder. J. Clin. Med. 2024, 13, 3026. [Google Scholar] [CrossRef]
- Zhou, Y.; Parreira, J.D.; Shahrbabak, S.M.; Sanchez-Perez, J.A.; Rahman, F.N.; Gazi, A.H.; Inan, O.T.; Hahn, J.O. A Synthetic Multi-Modal Variable to Capture Cardiovascular Responses to Acute Mental Stress and Transcutaneous Median Nerve Stimulation. IEEE Trans. Biomed. Eng. 2024, 72, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.K.; Ryu, Y.; Chang, S.; Im, C.K.; Bae, J.H.; Gwak, Y.S.; Yang, C.H.; Kim, H.Y. Attenuation of Hypertension by C-Fiber Stimulation of the Human Median Nerve and the Concept-Based Novel Nevice. Sci. Rep. 2018, 8, 14967. [Google Scholar] [CrossRef] [PubMed]
- Badran, B.W.; Yu, A.B.; Adair, D.; Mappin, G.; DeVries, W.H.; Jenkins, D.D.; George, M.S.; Bikson, M. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. J. Vis. Exp. 2019, 143, 58984. [Google Scholar] [CrossRef]
- Parreira, J.D.; Chalumuri, Y.R.; Mousavi, A.S.; Modak, M.; Zhou, Y.; Sanchez-Perez, J.A.; Gazi, A.H.; Harrison, A.B.; Inan, O.T.; Hahn, J.O. A proof-of-concept investigation of multi-modal physiological signal responses to acute mental stress. Biomed. Signal Process. Control. 2023, 85, 105001. [Google Scholar] [CrossRef]
- Lindsey, B.; Hanley, C.; Reider, L.; Snyder, S.; Zhou, Y.; Bell, E.; Shim, J.; Hahn, J.O.; Vignos, M.; Bar-Kochba, E. Accuracy of heart rate measured by military-grade wearable ECG monitor compared with reference and commercial monitors. BMJ Mil. Health 2023, e002541. [Google Scholar] [CrossRef]
- Zhou, Y.; Mousavi, A.S.; Chalumuri, Y.R.; Parreira, J.D.; Modak, M.; Sanchez-Perez, J.A.; Gazi, A.H.; Inan, O.T.; Hahn, J.O. Inference-enabled tracking of acute mental stress via multi-modal wearable physiological sensing: A proof-of-concept study. Biocybern. Biomed. Eng. 2024, 44, 771–781. [Google Scholar] [CrossRef]
- Zhou, Y.; Lindsey, B.; Snyder, S.; Bell, E.; Reider, L.; Vignos, M.; Bar-Kochba, E.; Mousavi, A.; Parreira, J.; Hanley, C.; et al. Sampling rate requirement for accurate calculation of heart rate and its variability based on the electrocardiogram. Physiol. Meas. 2024, 45, 025007. [Google Scholar] [CrossRef] [PubMed]
- Mukkamala, R.; Hahn, J.O.; Inan, O.T.; Mestha, L.K.; Kim, C.-S.; Toreyin, H.; Kyal, S. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans. Biomed. Eng. 2015, 62, 1879–1901. [Google Scholar] [CrossRef] [PubMed]
- Inan, O.T.; Migeotte, P.F.; Park, K.S.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.; Funtova, I.; Prisk, G.K.; et al. Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J. Biomed. Health Inform. 2015, 19, 1414–1427. [Google Scholar] [CrossRef] [PubMed]
- Giannakakis, G.; Grigoriadis, D.; Giannakaki, K.; Simantiraki, O.; Roniotis, A.; Tsiknakis, M. Review on Psychological Stress Detection Using Biosignals. IEEE Trans. Affect. Comput. 2022, 13, 440–460. [Google Scholar] [CrossRef]
- Weissler, A.M.; Harris, W.S.; Schoenfeld, C.D. Systolic Time Intervals in Heart Failure in Man. Am. Heart Assoc. Circ. 1968, 37, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Harley, A.; Starmer, C.F.; Greenfield, J.C. Pressure-flow studies in man. An evaluation of the duration of the phases of systole. J. Clin. Investig. 1969, 48, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Brindle, R.C.; Ginty, A.T.; Phillips, A.C.; Carroll, D. A Tale of Two Mechanisms: A Meta-Analytic Approach Toward Understanding the Autonomic Basis of Cardiovascular Reactivity to Acute Psychological Stress. Psychophysiology 2014, 51, 964–976. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, M.; Turivnenko, S.; Milston, A.; Babchenko, A.; Mahler, Y. Low-frequency variability in the blood volume and in the blood volume pulse measured by photoplethysmography. J. Biomed. Opt. 1996, 1, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, L.M. Respiration signals from photoplethysmography. Anesth. Analg. 2013, 117, 859–865. [Google Scholar] [CrossRef]
- Carroll, D.; Phillips, A.C.; Der, G.; Hunt, K.; Benzeval, M. Blood pressure reactions to acute mental stress and future blood pressure status: Data from the 12-year follow-up of the West of Scotland Study. Psychosom. Med. 2011, 73, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Weissler, A.M.; Peeler, R.G.; Roehll, W.H. Relationships between left ventricular ejection time, stroke volume, and heart rate in normal individuals and patients with cardiovascular disease. Am. Heart J. 1961, 62, 367–378. [Google Scholar] [CrossRef]
- Gazi, A.H.; Gurel, N.Z.; Richardson, K.L.S.; Wittbrodt, M.T.; Shah, A.J.; Vaccarino, V.; Bremner, J.D.; Inan, O.T. Digital cardiovascular biomarker responses to transcutaneous cervical vagus nerve stimulation: State-space modeling, prediction, and simulation. JMIR Mhealth Uhealth 2020, 8, e20488. [Google Scholar] [CrossRef]
MNS | AVNS | |
---|---|---|
Stress + STIM [%] | 79.0 | 84.2 |
STIM [%] | 73.7 | 71.1 |
Stress + STIM & STIM [%] | 55.3 | 57.9 |
MNS | AVNS | |
---|---|---|
Consistency [%] | 86.0 (76.5–99.5) | 69.3 (63.3–93.3) |
Sensitivity | 0.77 (0.26–0.86) | 0.40 (0.10–0.94) |
Effectiveness [%] | 33.8 (18.3–49.8) * | 19.4 (2.90–28.8) |
MNS | AVNS | |||
---|---|---|---|---|
Stress + STIM [%] | STIM [%] | Stress + STIM [%] | STIM [%] | |
PEP−1 | 81.6 | 31.6 | 71.1 | 44.7 |
HR | 39.5 | 65.8 | 63.2 | 50.0 |
APPG−1 | 76.3 | 63.2 | 81.6 | 71.1 |
PAT−1 | 76.3 | 39.5 | 79.0 | 47.4 |
HR·LVET | 71.1 | 55.3 | 68.4 | 68.4 |
PTT−1 | 76.3 | 57.9 | 71.1 | 57.9 |
MNS | AVNS | |||
---|---|---|---|---|
Consistency [%] | Sensitivity | Consistency [%] | Sensitivity | |
PEP−1 | 34.7 (0.50–65.0) | −0.21 (−1.13–0.25) | 57.0 (29.3–72.7) | 0.07 (−0.25–0.55) |
HR | 78.0 (45.3–93.0) | 0.60 (−0.11–0.97) | 59.3 (40.0–81.3) | 0.15 (−0.21–0.50) |
APPG−1 | 85.3 (58.3–100) | 0.52 (0.04–0.84) | 76.7 (63.3–100) | 0.41 (0.12–1.04) |
PAT−1 | 44.7 (27.8–91.0) | −0.09 (−0.50–0.75) | 66.7 (39.3–88.0) | 0.34 (−0.15–0.76) |
HR·LVET | 68.7 (40.7–81.8) | 0.25 (−0.29–0.82) | 66.0 (52.7–74.7) | 0.21 (−0.13–0.39) |
PTT−1 | 65.3 (27.8–90.2) | 0.29 (−0.29–0.74) | 70.0 (42.7–91.3) | 0.19 (−0.28–0.87) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Masoumi Shahrbabak, S.; Bahrami, R.; Rahman, F.N.; Sanchez-Perez, J.A.; Gazi, A.H.; Inan, O.T.; Hahn, J.-O. Non-Pharmacological Mitigation of Acute Mental Stress-Induced Sympathetic Arousal: Comparison Between Median Nerve Stimulation and Auricular Vagus Nerve Stimulation. Sensors 2025, 25, 1371. https://doi.org/10.3390/s25051371
Zhou Y, Masoumi Shahrbabak S, Bahrami R, Rahman FN, Sanchez-Perez JA, Gazi AH, Inan OT, Hahn J-O. Non-Pharmacological Mitigation of Acute Mental Stress-Induced Sympathetic Arousal: Comparison Between Median Nerve Stimulation and Auricular Vagus Nerve Stimulation. Sensors. 2025; 25(5):1371. https://doi.org/10.3390/s25051371
Chicago/Turabian StyleZhou, Yuanyuan, Sina Masoumi Shahrbabak, Rayan Bahrami, Farhan N. Rahman, Jesus Antonio Sanchez-Perez, Asim H. Gazi, Omer T. Inan, and Jin-Oh Hahn. 2025. "Non-Pharmacological Mitigation of Acute Mental Stress-Induced Sympathetic Arousal: Comparison Between Median Nerve Stimulation and Auricular Vagus Nerve Stimulation" Sensors 25, no. 5: 1371. https://doi.org/10.3390/s25051371
APA StyleZhou, Y., Masoumi Shahrbabak, S., Bahrami, R., Rahman, F. N., Sanchez-Perez, J. A., Gazi, A. H., Inan, O. T., & Hahn, J.-O. (2025). Non-Pharmacological Mitigation of Acute Mental Stress-Induced Sympathetic Arousal: Comparison Between Median Nerve Stimulation and Auricular Vagus Nerve Stimulation. Sensors, 25(5), 1371. https://doi.org/10.3390/s25051371