Feasibility of Smartphone-Based Exercise Training Integrated with Functional Electrical Stimulation After Stroke (SETS): A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethical Considerations
2.3. Intervention
2.4. Outcome Measures
2.5. Sample Size Estimation and Statistical Analysis
3. Results
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R. Heart disease and stroke statistics—2018 update: A report from the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar]
- Collaborators, G.S. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795. [Google Scholar]
- Feigin, V.L.; Norrving, B.; Mensah, G.A. Global burden of stroke. Circ. Res. 2017, 120, 439–448. [Google Scholar] [CrossRef]
- Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol. 2020, 19, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.V. Rehabilitation of the older adult with stroke. Clin. Geriatr. Med. 2006, 22, 469–489. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.-Y.; Lin, Y.; Geng, J.-L.; Sun, Y.-M.; Chen, Y.; Shi, G.-W.; Xu, Q.; Li, Y.-S. Age-and gender-specific prevalence of risk factors in patients with first-ever ischemic stroke in China. Stroke Res. Treat. 2012, 2012, 136398. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Stroke Recovery Is a Journey: Prediction and Potentials of Motor Recovery after a Stroke from a Practical Perspective. Life 2023, 13, 2061. [Google Scholar] [CrossRef]
- Saunders, D.H.; Sanderson, M.; Hayes, S.; Johnson, L.; Kramer, S.; Carter, D.D.; Jarvis, H.; Brazzelli, M.; Mead, G.E. Physical fitness training for stroke patients. Cochrane Database Syst. Rev. 2020, 3, CD003316. [Google Scholar] [PubMed]
- Khan, F.; Chevidikunnan, M.F. Prevalence of balance impairment and factors associated with balance among patients with stroke. A cross sectional retrospective case control study. Healthcare 2021, 9, 320. [Google Scholar] [CrossRef]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y. Heart disease and stroke statistics—2022 update: A report from the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N. Heart disease and stroke statistics—2020 update: A report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [PubMed]
- Buvarp, D.; Rafsten, L.; Sunnerhagen, K.S. Predicting longitudinal progression in functional mobility after stroke: A prospective cohort study. Stroke 2020, 51, 2179–2187. [Google Scholar] [CrossRef] [PubMed]
- Garland, S.J.; Willems, D.A.; Ivanova, T.D.; Miller, K.J. Recovery of standing balance and functional mobility after stroke. Arch. Phys. Med. Rehabil. 2003, 84, 1753–1759. [Google Scholar] [CrossRef]
- Michael, K.M.; Allen, J.K.; Macko, R.F. Reduced ambulatory activity after stroke: The role of balance, gait, and cardiovascular fitness. Arch. Phys. Med. Rehabil. 2005, 86, 1552–1556. [Google Scholar] [CrossRef] [PubMed]
- Weerdesteyn, V.; de Niet, M.; van Duijnhoven, H.J.; Geurts, A.C. Falls in individuals with stroke. J. Rehabil. Res. Dev. 2008, 45, 1195–1213. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.-M.; Studenski, S.; Duncan, P.W.; Perera, S. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke 2002, 33, 1840–1844. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.; Parekh, S.; Vaghela, N. Impact of stroke on quality of life and functional independence. Natl. J. Physiol. Pharm. Pharmacol. 2018, 8, 1595–1598. [Google Scholar] [CrossRef]
- Frankel, J.E.; Bean, J.F.; Frontera, W.R. Exercise in the elderly: Research and clinical practice. Clin. Geriatr. Med. 2006, 22, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.H.; Greig, C.A.; Mead, G.E. Physical activity and exercise after stroke: Review of multiple meaningful benefits. Stroke 2014, 45, 3742–3747. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.; Deaudelin, I.; Robichaud, L.; Rousseau, J.; Viscogliosi, C.; Talbot, L.R.; Desrosiers, J.; BRAD Group. Rehabilitation needs for older adults with stroke living at home: Perceptions of four populations. BMC Geriatr. 2007, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Billinger, S.A.; Arena, R.; Bernhardt, J.; Eng, J.J.; Franklin, B.A.; Johnson, C.M.; MacKay-Lyons, M.; Macko, R.F.; Mead, G.E.; Roth, E.J. Physical activity and exercise recommendations for stroke survivors: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014, 45, 2532–2553. [Google Scholar] [CrossRef]
- Rimmer, J.H.; Wang, E.; Smith, D. Barriers associated with exercise and community access for individuals with stroke. J. Rehabil. Res. Dev. 2008, 45, 315–322. [Google Scholar] [CrossRef]
- Todhunter-Brown, A.; Baer, G.; Campbell, P.; Choo, P.L.; Forster, A.; Morris, J.; Pomeroy, V.M.; Langhorne, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014, 2014, CD001920. [Google Scholar]
- Toh, S.F.M.; Chia, P.F.; Fong, K.N. Effectiveness of home-based upper limb rehabilitation in stroke survivors: A systematic review and meta-analysis. Front. Neurol. 2022, 13, 964196. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, L.T.; Nadeau, S.; Martins, J.C.; Teixeira-Salmela, L.F.; Britto, R.R.; Faria, C.D.C.D.M. Efficacy of interventions aimed at improving physical activity in individuals with stroke: A systematic review. Disabil. Rehabil. 2020, 42, 902–917. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Cai, C.; Chen, X.; Wei, X. Effect of home-based interventions on basic activities of daily living for patients who had a stroke: A systematic review with meta-analysis. BMJ Open 2022, 12, e056045. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.R.; Rocha, R.J.; Boening, A.; Ferreira, G.P.; Perovano, M.C. Home-based exercises are as effective as equivalent doses of centre-based exercises for improving walking speed and balance after stroke: A systematic review. J. Physiother. 2022, 68, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, B.H. A rehabilitation-internet-of-things in the home to augment motor skills and exercise training. Neurorehabilit. Neural Repair 2017, 31, 217–227. [Google Scholar] [CrossRef]
- Langhorne, P.; Baylan, S.; Trialists, E.S.D. Early supported discharge services for people with acute stroke. Cochrane Database Syst. Rev. 2017, 7, CD000443. [Google Scholar] [CrossRef]
- Laver, K.E.; Adey-Wakeling, Z.; Crotty, M.; Lannin, N.A.; George, S.; Sherrington, C. Telerehabilitation services for stroke. Cochrane Database Syst. Rev. 2020, 1, CD010255. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; van Wegen, E.; van Peppen, R.; Van der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef] [PubMed]
- Vloothuis, J.D.; Mulder, M.; Veerbeek, J.M.; Konijnenbelt, M.; Visser-Meily, J.M.; Ket, J.C.; Kwakkel, G.; van Wegen, E.E. Caregiver-mediated exercises for improving outcomes after stroke. Cochrane Database Syst. Rev. 2016, 12, CD011058. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-C.; Tsai, A.C.; Wang, J.-Y.; Lin, Y.-T.; Lin, K.-L.; Chen, J.J.; Lin, B.Y.; Lin, T.C. Caregiver-mediated intervention can improve physical functional recovery of patients with chronic stroke: A randomized controlled trial. Neurorehabilit. Neural Repair 2015, 29, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Gooch, H.J.; Jarvis, K.A.; Stockley, R.C. Behavior Change Approaches in Digital Technology–Based Physical Rehabilitation Interventions Following Stroke: Scoping Review. J. Med. Internet Res. 2024, 26, e48725. [Google Scholar] [CrossRef] [PubMed]
- Argent, R.; Daly, A.; Caulfield, B. Patient involvement with home-based exercise programs: Can connected health interventions influence adherence? JMIR Mhealth Uhealth 2018, 6, e8518. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Abel, K.T.; Janecek, J.T.; Chen, Y.; Zheng, K.; Cramer, S.C. Home-based technologies for stroke rehabilitation: A systematic review. Int. J. Med. Inform. 2019, 123, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.; Levati, S.; McClurg, D.; Brady, M.; Williams, B. What adherence measures should be used in trials of home-based rehabilitation interventions? A systematic review of the validity, reliability, and acceptability of measures. Arch. Phys. Med. Rehabil. 2017, 98, 1241–1256.e45. [Google Scholar] [CrossRef]
- Kwakkel, G.; Lannin, N.A.; Borschmann, K.; English, C.; Ali, M.; Churilov, L.; Saposnik, G.; Winstein, C.; Van Wegen, E.E.; Wolf, S.L. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int. J. Stroke 2017, 12, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Emmerson, K.B.; Harding, K.E.; Taylor, N.F. Home exercise programmes supported by video and automated reminders compared with standard paper-based home exercise programmes in patients with stroke: A randomized controlled trial. Clin. Rehabil. 2017, 31, 1068–1077. [Google Scholar] [CrossRef]
- Grau-Pellicer, M.; Lalanza, J.; Jovell-Fernández, E.; Capdevila, L. Impact of mHealth technology on adherence to healthy PA after stroke: A randomized study. Top. Stroke Rehabil. 2020, 27, 354–368. [Google Scholar] [CrossRef] [PubMed]
- Olafsdottir, S.A.; Jonsdottir, H.; Bjartmarz, I.; Magnusson, C.; Caltenco, H.; Kytö, M.; Maye, L.; McGookin, D.; Arnadottir, S.A.; Hjaltadottir, I. Feasibility of ActivABLES to promote home-based exercise and physical activity of community-dwelling stroke survivors with support from caregivers: A mixed methods study. BMC Health Serv. Res. 2020, 20, 562. [Google Scholar] [CrossRef] [PubMed]
- Paul, L.; Wyke, S.; Brewster, S.; Sattar, N.; Gill, J.M.; Alexander, G.; Rafferty, D.; McFadyen, A.K.; Ramsay, A.; Dybus, A. Increasing physical activity in stroke survivors using STARFISH, an interactive mobile phone application: A pilot study. Top. Stroke Rehabil. 2016, 23, 170–177. [Google Scholar] [CrossRef]
- Salgueiro, C.; Urrútia, G.; Cabanas-Valdés, R. Influence of core-stability exercises guided by a telerehabilitation app on trunk performance, balance and gait performance in chronic stroke survivors: A preliminary randomized controlled trial. Int. J. Environ. Res. Public Health 2022, 19, 5689. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.H.; Kim, Y.; Lee, K.-S.; Park, H.-S. Development and clinical evaluation of a web-based upper limb home rehabilitation system using a smartwatch and machine learning model for chronic stroke survivors: Prospective comparative study. JMIR Mhealth Uhealth 2020, 8, e17216. [Google Scholar] [CrossRef]
- Rintala, A.; Kossi, O.; Bonnechère, B.; Evers, L.; Printemps, E.; Feys, P. Mobile health applications for improving physical function, physical activity, and quality of life in stroke survivors: A systematic review. Disabil. Rehabil. 2023, 45, 4001–4015. [Google Scholar] [CrossRef] [PubMed]
- Aphiphaksakul, P.; Siriphorn, A. Home-based exercise using balance disc and smartphone inclinometer application improves balance and activity of daily living in individuals with stroke: A randomized controlled trial. PLoS ONE 2022, 17, e0277870. [Google Scholar] [CrossRef]
- Burns, S.P.; Terblanche, M.; Perea, J.; Lillard, H.; DeLaPena, C.; Grinage, N.; MacKinen, A.; Cox, E.E. mHealth intervention applications for adults living with the effects of stroke: A scoping review. Arch. Rehabil. Res. Clin. Transl. 2021, 3, 100095. [Google Scholar] [CrossRef]
- Palacholla, R.S.; Fischer, N.; Coleman, A.; Agboola, S.; Kirley, K.; Felsted, J.; Katz, C.; Lloyd, S.; Jethwani, K. Provider-and patient-related barriers to and facilitators of digital health technology adoption for hypertension management: Scoping review. JMIR Cardio 2019, 3, e11951. [Google Scholar] [CrossRef]
- Torriani-Pasin, C.; Demers, M.; Polese, J.C.; Bishop, L.; Wade, E.; Hempel, S.; Winstein, C. mHealth technologies used to capture walking and arm use behavior in adult stroke survivors: A scoping review beyond measurement properties. Disabil. Rehabil. 2022, 44, 6094–6106. [Google Scholar] [CrossRef]
- Boehme, A.K.; Esenwa, C.; Elkind, M.S. Stroke risk factors, genetics, and prevention. Circ. Res. 2017, 120, 472–495. [Google Scholar] [CrossRef]
- Wei, W.E.; De Silva, D.A.; Chang, H.M.; Yao, J.; Matchar, D.B.; Young, S.H.; See, S.J.; Lim, G.H.; Wong, T.H.; Venketasubramanian, N. Post-stroke patients with moderate function have the greatest risk of falls: A National Cohort Study. BMC Geriatr. 2019, 19, 373. [Google Scholar] [CrossRef] [PubMed]
- Yousufuddin, M.; Young, N. Aging and ischemic stroke. Aging 2019, 11, 2542. [Google Scholar] [CrossRef]
- Selamat, S.N.S.; Che Me, R.; Ahmad Ainuddin, H.; Salim, M.S.; Ramli, H.R.; Romli, M.H. The application of technological intervention for stroke rehabilitation in Southeast Asia: A scoping review with stakeholders’ consultation. Front. Public Health 2022, 9, 783565. [Google Scholar] [CrossRef]
- Verma, A.; Towfighi, A.; Brown, A.; Abhat, A.; Casillas, A. Moving towards equity with digital health innovations for stroke care. Stroke 2022, 53, 689–697. [Google Scholar] [CrossRef]
- Deshpande, M.; Nathani, F. Effect of home-based mirror therapy on lower limb function in patients with stroke: A randomized controlled trial. Panacea J. Med. Sci. 2020, 10, 13–17. [Google Scholar]
- Poli, P.; Morone, G.; Rosati, G.; Masiero, S. Robotic technologies and rehabilitation: New tools for stroke patients’ therapy. BioMed Res. Int. 2013, 2013, 153872. [Google Scholar] [CrossRef] [PubMed]
- Sharififar, S.; Shuster, J.J.; Bishop, M.D. Adding electrical stimulation during standard rehabilitation after stroke to improve motor function. A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2018, 61, 339–344. [Google Scholar] [CrossRef]
- Bae, S.; Lee, J.; Lee, B.-H. Effect of an EMG–FES interface on ankle joint training combined with real-time feedback on balance and gait in patients with stroke hemiparesis. Healthcare 2020, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Bethoux, F.; Rogers, H.L.; Nolan, K.J.; Abrams, G.M.; Annaswamy, T.; Brandstater, M.; Browne, B.; Burnfield, J.M.; Feng, W.; Freed, M.J. Long-term follow-up to a randomized controlled trial comparing peroneal nerve functional electrical stimulation to an ankle foot orthosis for patients with chronic stroke. Neurorehabilit. Neural Repair 2015, 29, 911–922. [Google Scholar] [CrossRef]
- Hwang, D.-Y.; Lee, H.-J.; Lee, G.-C.; Lee, S.-M. Treadmill training with tilt sensor functional electrical stimulation for improving balance, gait, and muscle architecture of tibialis anterior of survivors with chronic stroke: A randomized controlled trial. Technol. Health Care 2015, 23, 443–452. [Google Scholar] [CrossRef]
- Lee, K. Balance training with electromyogram-triggered functional electrical stimulation in the rehabilitation of stroke patients. Brain Sci. 2020, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Sharif, F.; Ghulam, S.; Malik, A.N.; Saeed, Q. Effectiveness of functional electrical stimulation (FES) versus conventional electrical stimulation in gait rehabilitation of patients with stroke. J. Coll. Physicians Surg. Pak. 2017, 27, 703–706. [Google Scholar] [PubMed]
- Yang, Y.-R.; Mi, P.-L.; Huang, S.-F.; Chiu, S.-L.; Liu, Y.-C.; Wang, R.-Y. Effects of neuromuscular electrical stimulation on gait performance in chronic stroke with inadequate ankle control-A randomized controlled trial. PLoS ONE 2018, 13, e0208609. [Google Scholar] [CrossRef] [PubMed]
- Alon, G.; McBride, K.; Levitt, A. Feasibility of randomised clinical trial of early initiation and prolonged, home-base FES training to enhance upper limb functional recovery following stroke. In Proceedings of the 9th Annual Conference of the International FES Society, Bournemouth, UK, 6–9 September 2004. [Google Scholar]
- Fu, M.J.; Harley, M.Y.; Hisel, T.; Busch, R.; Wilson, R.; Chae, J.; Knutson, J.S. Ability of people with post-stroke hemiplegia to self-administer FES-assisted hand therapy video games at home: An exploratory case series. J. Rehabil. Assist. Technol. Eng. 2019, 6, 2055668319854000. [Google Scholar] [CrossRef]
- Hara, Y.; Ogawa, S.; Tsujiuchi, K.; Muraoka, Y. A home-based rehabilitation program for the hemiplegic upper extremity by power-assisted functional electrical stimulation. Disabil. Rehabil. 2008, 30, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Halawani, A.; Aljabri, A.; Bahathiq, D.M.; Morya, R.E.; Alghamdi, S.; Makkawi, S. The efficacy of contralaterally controlled functional electrical stimulation compared to conventional neuromuscular electrical stimulation for recovery of limb function following a stroke: A systematic review and meta-analysis. Front. Neurol. 2024, 15, 1340248. [Google Scholar] [CrossRef]
- Wang, S.C.Y.; Kassavou, A. Digital health behavioural interventions to support physical activity and sedentary behaviour in adults after stroke: A systematic literature review with meta-analysis of controlled trials. Behav. Sci. 2023, 13, 62. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Huo, H.; Yang, S.; Zhang, Y.; Cai, S.; Dong, X.; Wang, D. Efficacy of electrical stimulation for post-stroke motor dysfunction: A protocol for systematic review and network meta-analysis. PLoS ONE 2024, 19, e0304174. [Google Scholar] [CrossRef]
- Stein, R.B.; Everaert, D.G.; Thompson, A.K.; Chong, S.L.; Whittaker, M.; Robertson, J.; Kuether, G. Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabilit. Neural Repair 2010, 24, 152–167. [Google Scholar] [CrossRef]
- Chow, L.S.; Gerszten, R.E.; Taylor, J.M.; Pedersen, B.K.; Van Praag, H.; Trappe, S.; Febbraio, M.A.; Galis, Z.S.; Gao, Y.; Haus, J.M. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 2022, 18, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Cefis, M.; Chaney, R.; Wirtz, J.; Méloux, A.; Quirié, A.; Leger, C.; Prigent-Tessier, A.; Garnier, P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front. Mol. Neurosci. 2023, 16, 1275924. [Google Scholar] [CrossRef] [PubMed]
- Allison, T.; McCarthy, G.; Wood, C.C.; Jones, S.J. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve: A review of scalp and intracranial recordings. Brain 1991, 114, 2465–2503. [Google Scholar] [CrossRef]
- Francis, S.; Kelly, E.; Bowtell, R.; Dunseath, W.; Folger, S.; McGlone, F. fMRI of the responses to vibratory stimulation of digit tips. Neuroimage 2000, 11, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Ando, S.; Takagi, Y.; Watanabe, H.; Mochizuki, K.; Sudo, M.; Fujibayashi, M.; Tsurugano, S.; Sato, K. Effects of electrical muscle stimulation on cerebral blood flow. BMC Neurosci. 2021, 22, 67. [Google Scholar] [CrossRef] [PubMed]
- Descollonges, M.; Marmier, P.; Marillier, M.; Jafari, E.; Brugniaux, J.V.; Deley, G. Effect of electrical muscle stimulation on cerebrovascular function and cognitive performance. Am. J. Physiol.-Heart Circ. Physiol. 2024, 326, H923–H928. [Google Scholar] [CrossRef]
- Aout, T.; Begon, M.; Jegou, B.; Peyrot, N.; Caderby, T. Effects of functional electrical stimulation on gait characteristics in healthy individuals: A systematic review. Sensors 2023, 23, 8684. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, Z.; Mohammadi, R.; Sadeghi, T.; Kalbasi, G. The effects of electrical stimulation of lower extremity muscles on balance in stroke patients: A systematic review of literatures. J. Stroke Cerebrovasc. Dis. 2021, 30, 105793. [Google Scholar] [CrossRef]
- Purohit, R.; Varas-Diaz, G.; Bhatt, T. Functional electrical stimulation to enhance reactive balance among people with hemiparetic stroke. Exp. Brain Res. 2024, 242, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Eraifej, J.; Clark, W.; France, B.; Desando, S.; Moore, D. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: A systematic review and meta-analysis. Syst. Rev. 2017, 6, 40. [Google Scholar] [CrossRef]
- Howlett, O.A.; Lannin, N.A.; Ada, L.; McKinstry, C. Functional electrical stimulation improves activity after stroke: A systematic review with meta-analysis. Arch. Phys. Med. Rehabil. 2015, 96, 934–943. [Google Scholar] [CrossRef]
- Pereira, S.; Mehta, S.; McIntyre, A.; Lobo, L.; Teasell, R.W. Functional electrical stimulation for improving gait in persons with chronic stroke. Top. Stroke Rehabil. 2012, 19, 491–498. [Google Scholar] [CrossRef]
- Hosiasson, M.; Rigotti-Thompson, M.; Appelgren-Gonzalez, J.P.; Covarrubias-Escudero, F.; Urzua, B.; Barria, P.; Aguilar, R. Biomechanical gait effects of a single intervention with wearable closed loop control FES system in chronic stroke patients. A proof-of-concept pilot study. In Proceedings of the 2023 International Conference on Rehabilitation Robotics (ICORR), Singapore, 24–28 September 2023. [Google Scholar] [CrossRef]
- Covarrubias-Escudero, F.; Balbontín-Miranda, F.; Urzúa-Soler, B.; Ciuffardi, R.; Muñoz, M.; Hernández, V.; Appelgren-González, J.P. Home-based functional electrical stimulation protocol for people with chronic stroke. Efficacy and usability of a single-center cohort. Artif. Organs 2024. Advance online publication. [Google Scholar] [CrossRef] [PubMed]
- McAuley, E.; Duncan, T.; Tammen, V.V. Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: A confirmatory factor analysis. Res. Q. Exerc. Sport 1989, 60, 48–58. [Google Scholar] [CrossRef]
- Hsieh, Y.-W.; Lee, M.-T.; Chen, C.-C.; Hsu, F.-L.; Wu, C.-Y. Development and user experience of an innovative multi-mode stroke rehabilitation system for the arm and hand for patients with stroke. Sci. Rep. 2022, 12, 1868. [Google Scholar] [CrossRef]
- Van Criekinge, T.; Heremans, C.; Burridge, J.; Deutsch, J.E.; Hammerbeck, U.; Hollands, K.; Karthikbabu, S.; Mehrholz, J.; Moore, J.L.; Salbach, N.M. Standardized measurement of balance and mobility post-stroke: Consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable. Neurorehabilit. Neural Repair 2024, 38, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Tou, J.I.S.; Mimi, M.T.; Ng, S.S. Reliability and validity of the timed up and go test with a motor task in people with chronic stroke. Arch. Phys. Med. Rehabil. 2017, 98, 2213–2220. [Google Scholar] [CrossRef]
- O’Connor, D.; Lennon, O.; Fernandez, M.M.; Signorelli, G.R.; Caulfield, B. Functional, physiological and subjective responses to concurrent neuromuscular electrical stimulation (NMES) exercise in adult cancer survivors: A controlled prospective study. Sci. RepoRtS 2020, 10, 14008. [Google Scholar] [CrossRef]
- Mishra, B.; Sudheer, P.; Agarwal, A.; Nilima, N.; Srivastava, M.V.P.; Vishnu, V.Y. Minimal Clinically Important Difference of Scales Reported in Stroke Trials: A Review. Brain Sci. 2024, 14, 80. [Google Scholar] [CrossRef]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using psychometric techniques to improve the Balance Evaluation System’s Test: The mini-BESTest. J. Rehabil. Med. Off. J. UEMS Eur. Board Phys. Rehabil. Med. 2010, 42, 323. [Google Scholar]
- Tamura, S.; Miyata, K.; Hasegawa, S.; Kobayashi, S.; Shioura, K.; Usuda, S. Pooled Minimal Clinically Important Differences of the Mini-Balance Evaluation Systems Test in Patients With Early Subacute Stroke: A Multicenter Prospective Observational Study. Phys. Ther. 2024, 104, pzae017. [Google Scholar] [CrossRef]
- Tilson, J.K.; Sullivan, K.J.; Cen, S.Y.; Rose, D.K.; Koradia, C.H.; Azen, S.P.; Duncan, P.W.; Team, L.E.A.P.S.I. Meaningful gait speed improvement during the first 60 days poststroke: Minimal clinically important difference. Phys. Ther. 2010, 90, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Stistrup, R.D.; Madsen, J.; Schjøtt, C.S.; Vinther, A. The timed up and go test and 30 second chair-stand test are reliable for hospitalized patients with stroke. Physiotherapy 2015, 101, e918. [Google Scholar] [CrossRef]
- Agustín, R.M.-S.; Crisostomo, M.J.; Sánchez-Martínez, M.P.; Medina-Mirapeix, F. Responsiveness and minimal clinically important difference of the five times sit-to-stand test in patients with stroke. Int. J. Environ. Res. Public Health 2021, 18, 2314. [Google Scholar] [CrossRef]
- Perera, S.; Mody, S.H.; Woodman, R.C.; Studenski, S.A. Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 2006, 54, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. J. Appl. Stat. Pharm. Ind. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Gagnon, M.-A.; Batcho, C.S.; Bird, M.-L.; Labbé, B.; Best, K.L. Feasibility of a remotely supervised home-based group eHealth Fitness and Mobility Exercise program for stroke: French-Canadian version preliminary study. Top. Stroke Rehabil. 2023, 30, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Jovic, E.; Ahuja, K.; Lawler, K.; Hardcastle, S.; Bird, M. Carer-supported home-based exercises designed to target physical activity levels and functional mobility after stroke: A scoping review. Disabil. Rehabil. 2023, 46, 3760–3771. [Google Scholar] [CrossRef]
- Ogwumike, O.; Badaru, U.M.; Adeniyi, A.F. Factors influencing adherence to home-based exercise by stroke survivors in North Western Nigeria. Int. J. Ther. Rehabil. Res. 2014, 3, 1. [Google Scholar] [CrossRef]
- Scorrano, M.; Ntsiea, V.; Maleka, D. Enablers and barriers of adherence to home exercise programmes after stroke: Caregiver perceptions. Int. J. Ther. Rehabil. 2018, 25, 353–364. [Google Scholar] [CrossRef]
- Dodakian, L.; McKenzie, A.L.; Le, V.; See, J.; Pearson-Fuhrhop, K.; Burke Quinlan, E.; Zhou, R.J.; Augsberger, R.; Tran, X.A.; Friedman, N. A home-based telerehabilitation program for patients with stroke. Neurorehabilit. Neural Repair 2017, 31, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, L.V.; Nichols-Larsen, D.S.; Uswatte, G.; Strahl, N.; Simeo, M.; Proffitt, R.; Kelly, K.; Crawfis, R.; Taub, E.; Morris, D. Video game rehabilitation for outpatient stroke (VIGoROUS): A multi-site randomized controlled trial of in-home, self-managed, upper-extremity therapy. EClinicalMedicine 2022, 43, 101239. [Google Scholar] [CrossRef] [PubMed]
- Kenny, M.; Gilmartin, J.; Thompson, C. Video-guided exercise after stroke: A feasibility randomised controlled trial. Physiother. Theory Pract. 2022, 38, 609–620. [Google Scholar] [CrossRef]
- Everaert, D.G.; Thompson, A.K.; Chong, S.L.; Stein, R.B. Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabilit. Neural Repair 2010, 24, 168–177. [Google Scholar] [CrossRef]
- Sabut, S.K.; Lenka, P.K.; Kumar, R.; Mahadevappa, M. Effect of functional electrical stimulation on the effort and walking speed, surface electromyography activity, and metabolic responses in stroke subjects. J. Electromyogr. Kinesiol. 2010, 20, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Sabut, S.K.; Sikdar, C.; Mondal, R.; Kumar, R.; Mahadevappa, M. Restoration of gait and motor recovery by functional electrical stimulation therapy in persons with stroke. Disabil. Rehabil. 2010, 32, 1594–1603. [Google Scholar] [CrossRef] [PubMed]
- Makowski, N.S.; Knutson, J.S.; Chae, J.; Crago, P.E. Functional electrical stimulation to augment poststroke reach and hand opening in the presence of voluntary effort: A pilot study. Neurorehabilit. Neural Repair 2014, 28, 241–249. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, M.L.; Hooper, J.E.; Cowan, P.; Weller, B.B.; Mercer, T.H. Habitual functional electrical stimulation therapy improves gait kinematics and walking performance, but not patient-reported functional outcomes, of people with multiple sclerosis who present with foot-drop. PLoS ONE 2014, 9, e103368. [Google Scholar] [CrossRef]
- Siemonsma, P.; Döpp, C.; Alpay, L.; Tak, E.; van Meeteren, N.; Chorus, A. Determinants influencing the implementation of home-based stroke rehabilitation: A systematic review. Disabil. Rehabil. 2014, 36, 2019–2030. [Google Scholar] [CrossRef]
- Van De Port, I.G.; Kwakkel, G.; Van Wijk, I.; Lindeman, E. Susceptibility to deterioration of mobility long-term after stroke: A prospective cohort study. Stroke 2006, 37, 167–171. [Google Scholar] [CrossRef]
- Cooke, A.; Kavussanu, M.; McIntyre, D.; Ring, C. The effects of individual and team competitions on performance, emotions, and effort. J. Sport Exerc. Psychol. 2013, 35, 132–143. [Google Scholar] [CrossRef]
- Verrienti, G.; Raccagni, C.; Lombardozzi, G.; De Bartolo, D.; Iosa, M. Motivation as a measurable outcome in stroke rehabilitation: A systematic review of the literature. Int. J. Environ. Res. Public Health 2023, 20, 4187. [Google Scholar] [CrossRef]
- Goršič, M.; Cikajlo, I.; Novak, D. Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: Effects on motivation and exercise intensity. J. Neuroeng. Rehabil. 2017, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Jurkiewicz, M.T.; Marzolini, S.; Oh, P. Adherence to a home-based exercise program for individuals after stroke. Top. Stroke Rehabil. 2011, 18, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.K.; Porter, R.E.; DeBaun-Sprague, E.; Van Puymbroeck, M.; Schmid, A.A. Exercise after stroke: Patient adherence and beliefs after discharge from rehabilitation. Top. Stroke Rehabil. 2017, 24, 142–148. [Google Scholar] [CrossRef]
- Poltawski, L.; Boddy, K.; Forster, A.; Goodwin, V.A.; Pavey, A.C.; Dean, S. Motivators for uptake and maintenance of exercise: Perceptions of long-term stroke survivors and implications for design of exercise programmes. Disabil. Rehabil. 2015, 37, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xiao, L.D.; Chamberlain, D.; Newman, P. Enablers and barriers in hospital-to-home transitional care for stroke survivors and caregivers: A systematic review. J. Clin. Nurs. 2021, 30, 2786–2807. [Google Scholar] [CrossRef]
- Mayo, N.E. Stroke rehabilitation at home: Lessons learned and ways forward. Stroke 2016, 47, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Takagi, H.; Tan, E.; Oyama, C.; Otaka, E.; Kondo, K.; Otaka, Y. Comparison of usefulness between the Mini-Balance Evaluation Systems Test and the Berg Balance Scale for measuring balance in patients with subacute stroke: A prospective cohort study. Front. Rehabil. Sci. 2024, 4, 1308706. [Google Scholar] [CrossRef]
- Löfgren, N.; Lenholm, E.; Conradsson, D.; Ståhle, A.; Franzén, E. The Mini-BESTest-a clinically reproducible tool for balance evaluations in mild to moderate Parkinson’s disease? BMC Neurol. 2014, 14, 235. [Google Scholar] [CrossRef] [PubMed]
- Descollonges, M.; Chaney, R.; Garnier, P.; Prigent-Tessier, A.; Brugniaux, J.V.; Deley, G. Electrical stimulation: A potential alternative to positively impact cerebral health? Front. Physiol. 2024, 15, 1464326. [Google Scholar] [CrossRef] [PubMed]
- Braun, R.G.; Wittenberg, G.F. Motor recovery: How rehabilitation techniques and technologies can enhance recovery and neuroplasticity. Semin. Neurol. 2021, 41, 167–176. [Google Scholar] [CrossRef] [PubMed]
Variables | n = 12 Mean (SD) |
---|---|
Age, y | 67.58 (5.36) |
Sex, M/F | 6/6 |
Race | African Americans (12) |
Height, m | 1.69 (0.10) |
Weight, kg | 80.75 (16.69) |
BMI, kg/m2 | 28.74 (4.74) |
Hemi-side, R/L | 5/6 |
Chronicity, y | 9.16 (2.96) |
Type of stroke, H/I | 7/5 |
AFO/No AFO | 9/3 |
CMSA (leg) (out of 7) | 2.41 (0.64) |
Fugl Meyer (LE) (out of 28) | 18.41 (3.84) |
MMSE | 26.17 (1.14) |
MoCA | 20.17 (1.67) |
Participant | Safety (Adverse/Non-Adverse Events and Other Symptoms) | Adherence (% Completion) |
---|---|---|
1 | None | 85 |
2 | None | 70 |
3 | None | 90 |
4 | None | 90 |
5 | Back pain (VAS: 2/10) | 60 |
6 | None | 95 |
7 | Fatigue (VAS: 2/10) | 80 |
8 | Knee pain (VAS: 3/10) | 80 |
9 | Fatigue (VAS: 3/10) | 85 |
10 | None | 95 |
11 | Fatigue (VAS:2/10) | 80 |
12 | None | 100 |
Outcome | Pre (Week 1) Median [IQR] | Post (Week 6) Median [IQR] | p Value |
---|---|---|---|
Interest/Enjoyment | 5 [4.25–5] | 6 [5.25–7] | 0.006 * |
Perceived competence | 4.5 [4–5.75] | 6 [6–7] | 0.011 * |
Effort/Importance | 5 [4–5] | 6 [5–7] | 0.02 * |
Pressure/Tension (score reversed) | 5.5 [4–6.75] | 5 [4–6.75] | 0.58 |
Perceived choice | 5.5 [5–6.75] | 6 [4.25–6.75] | 0.67 |
Value/Usefulness | 5 [4–5.75] | 6 [5.25–7] | 0.013 * |
Relatedness | 6 [5–6] | 6 [6–7] | 0.015 * |
Acceptability and Attitude (Questionnaire) | Pre (S1) | Post (S20) | |
Reduce costs | 0/33.33 | 25/16.67 | |
Reduce time | 0/50 | 25/8.33 | |
Help perform exercises decently | 0/58.33 | 66.67/0 | |
Reduce dependence on the therapist for exercises | 0/50 | 83.33/0 | |
Reduce dependence on the caregiver | 0/50 | 83.33/0 | |
Recommend to other friends | 0/83.33 | 50/0 | |
Continue to use application after termination | 0/25 | 75/0 | |
Continue to use device after termination | 0/83.33 | 50/0 | |
Helped improve physical health | 0/16.67 | 83.33/0 | |
Helped improve mental health | 0/25 | 50/0 | |
Helped improve social health | 0/83.33 | 16.67/1.83 | |
Total points (Median [IQR]) | 32 [31.25–33] | 19 [18–20] | 0.002 * |
System Usability Scale (Mean ± SD) | 61.75 ± 10.91 | 75.00 ± 11.74 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purohit, R.; Appelgren-Gonzalez, J.P.; Varas-Diaz, G.; Wang, S.; Hosiasson, M.; Covarrubias-Escudero, F.; Bhatt, T. Feasibility of Smartphone-Based Exercise Training Integrated with Functional Electrical Stimulation After Stroke (SETS): A Preliminary Study. Sensors 2025, 25, 1254. https://doi.org/10.3390/s25041254
Purohit R, Appelgren-Gonzalez JP, Varas-Diaz G, Wang S, Hosiasson M, Covarrubias-Escudero F, Bhatt T. Feasibility of Smartphone-Based Exercise Training Integrated with Functional Electrical Stimulation After Stroke (SETS): A Preliminary Study. Sensors. 2025; 25(4):1254. https://doi.org/10.3390/s25041254
Chicago/Turabian StylePurohit, Rudri, Juan Pablo Appelgren-Gonzalez, Gonzalo Varas-Diaz, Shuaijie Wang, Matias Hosiasson, Felipe Covarrubias-Escudero, and Tanvi Bhatt. 2025. "Feasibility of Smartphone-Based Exercise Training Integrated with Functional Electrical Stimulation After Stroke (SETS): A Preliminary Study" Sensors 25, no. 4: 1254. https://doi.org/10.3390/s25041254
APA StylePurohit, R., Appelgren-Gonzalez, J. P., Varas-Diaz, G., Wang, S., Hosiasson, M., Covarrubias-Escudero, F., & Bhatt, T. (2025). Feasibility of Smartphone-Based Exercise Training Integrated with Functional Electrical Stimulation After Stroke (SETS): A Preliminary Study. Sensors, 25(4), 1254. https://doi.org/10.3390/s25041254