Design and Evaluation of Wearable Solar Radiation Shields for Enhanced Personal Heat Exposure Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Details
2.2. Evaluation Methods
2.3. Bias Temperature Variable
3. Results
Temperature Bias Analysis
Temperature Bias Analysis (2 p.m.–6 p.m.)
4. Discussion
4.1. Challenges
4.2. Next Steps
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FDM | Fused Deposition Modeling |
PLA | Polylactic acid |
PVC | Polyvinyl chloride |
SLA | Stereolithography |
T/RH | Temperature/Relative Humidity |
References
- Stone, B. Urban and rural temperature trends in proximity to large US cities: 1951–2000. Int. J. Climatol. 2007, 27, 1801–1807. [Google Scholar] [CrossRef]
- Zhou, Y.; Shepherd, J.M. Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Nat. Hazards 2010, 52, 639–668. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Fang, J.; Li, Q.; Kaufmann, R.K.; Tucker, C.J.; Myneni, R.B. Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA 2004, 101, 9540–9544. [Google Scholar] [CrossRef] [PubMed]
- Oke, T.R. Boundary Layer Climates; Routledge: New York, NY, USA, 1987. [Google Scholar]
- Habeeb, D.; Polak, N.; Devajji, R. Leveraging an Urban Environmental Sensing Network to Improve Extreme Heat Resilience. In Proceedings of the 2024 IEEE 15th International Green and Sustainable Computing Conference (IGSC), Austin, TX, USA, 2–3 November 2024; pp. 151–158. [Google Scholar]
- Ulpiani, G.; Hart, M.A.; Virgilio, G.D.; Maharaj, A.M.; Lipson, M.J.; Potgieter, J. A citizen centred urban network for weather and air quality in Australian schools. Sci. Data 2022, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Chapman, L.; Muller, C.L.; Young, D.T.; Warren, E.L.; Grimmond, C.S.B.; Cai, X.M.; Ferranti, E.J. The Birmingham urban climate laboratory: An open meteorological test bed and challenges of the smart city. Bull. Am. Meteorol. Soc. 2015, 96, 1545–1560. [Google Scholar] [CrossRef]
- Muller, C.L.; Chapman, L.; Grimmond, C.; Young, D.T.; Cai, X. Sensors and the city: A review of urban meteorological networks. Int. J. Climatol. 2013, 33, 1585–1600. [Google Scholar] [CrossRef]
- Cureau, R.J.; Pigliautile, I.; Pisello, A.L. A new wearable system for sensing outdoor environmental conditions for monitoring hyper-microclimate. Sensors 2022, 22, 502. [Google Scholar] [CrossRef]
- Brandsma, T.; Wolters, D. Measurement and statistical modeling of the urban heat island of the city of Utrecht (the Netherlands). J. Appl. Meteorol. Climatol. 2012, 51, 1046–1060. [Google Scholar] [CrossRef]
- Kousis, I.; Manni, M.; Pisello, A. Environmental mobile monitoring of urban microclimates: A review. Renew. Sustain. Energy Rev. 2022, 169, 112847. [Google Scholar] [CrossRef]
- Tsin, P.K.; Knudby, A.; Krayenhoff, E.S.; Ho, H.C.; Brauer, M.; Henderson, S.B. Microscale mobile monitoring of urban air temperature. Urban Clim. 2016, 18, 58–72. [Google Scholar] [CrossRef]
- Kousis, I.; Pigliautile, I.; Pisello, A.L. Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Sci. Rep. 2021, 11, 9732. [Google Scholar] [CrossRef] [PubMed]
- Pigliautile, I.; Pisello, A.L. A new wearable monitoring system for investigating pedestrians’ environmental conditions: Development of the experimental tool and start-up findings. Sci. Total Environ. 2018, 630, 690–706. [Google Scholar] [CrossRef]
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef] [PubMed]
- Helbig, C.; Ueberham, M.; Becker, A.M.; Marquart, H.; Schlink, U. Wearable sensors for human environmental exposure in urban settings. Curr. Pollut. Rep. 2021, 7, 417–433. [Google Scholar] [CrossRef]
- Habeeb, D.; Clawson, J.; Zakeresfahani, A.; Holtz, Z. Investigating and Validating On-body Temperature Sensors for Personal Heat Exposure Tracking. In Proceedings of the CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; pp. 1–14. [Google Scholar]
- Mitchell, D.C.; Castro, J.; Armitage, T.L.; Vega-Arroyo, A.J.; Moyce, S.C.; Tancredi, D.J.; Bennett, D.H.; Jones, J.H.; Kjellstrom, T.; Schenker, M.B. Recruitment, methods and descriptive results of a physiologic assessment of latino farmworkers: The California heat illness prevention study (CHIPS). J. Occup. Environ. Med. 2017, 59, 649. [Google Scholar] [CrossRef]
- Mac, V.V.T.; Hertzberg, V.; McCauley, L.A. Examining agricultural workplace micro and macroclimate data using decision tree analysis to determine heat illness risk. J. Occup. Environ. Med. 2019, 61, 107–114. [Google Scholar] [CrossRef]
- Lundgren, K.; Kuklane, K.; Venugopal, V. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): A case study from workplaces in Chennai, India. Glob. Health Action 2014, 7, 25283. [Google Scholar] [CrossRef] [PubMed]
- Lanzinger, S.; Hampel, R.; Breitner, S.; Rückerl, R.; Kraus, U.; Cyrys, J.; Geruschkat, U.; Peters, A.; Schneider, A. Short-term effects of air temperature on blood pressure and pulse pressure in potentially susceptible individuals. Int. J. Hyg. Environ. Health 2014, 217, 775–784. [Google Scholar] [CrossRef]
- Calkins, M.M. Occupational Heat Exposure and Injury Risk in Washington State Construction Workers. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2018. [Google Scholar]
- Sugg, M.M.; Fuhrmann, C.M.; Runkle, J.D. Temporal and spatial variation in personal ambient temperatures for outdoor working populations in the southeastern USA. Int. J. Biometeorol. 2018, 62, 1521–1534. [Google Scholar] [CrossRef] [PubMed]
- Runkle, J.D.; Cui, C.; Fuhrmann, C.; Stevens, S.; Del Pinal, J.; Sugg, M.M. Evaluation of wearable sensors for physiologic monitoring of individually experienced temperatures in outdoor workers in southeastern US. Environ. Int. 2019, 129, 229–238. [Google Scholar] [CrossRef]
- Basu, R.; Samet, J.M. An exposure assessment study of ambient heat exposure in an elderly population in Baltimore, Maryland. Environ. Health Perspect. 2002, 110, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, M.C.; Kent, S.T.; Sloan, M.E.; Evans, M.B.; McClure, L.A.; Gohlke, J.M. Measuring personal heat exposure in an urban and rural environment. Environ. Res. 2015, 137, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Kuras, E.; Hondula, D.; Brown-Saracino, J. Heterogeneity in individually experienced temperatures (IETs) within an urban neighborhood: Insights from a new approach to measuring heat exposure. Int. J. Biometeorol. 2015, 59, 1363–1372. [Google Scholar] [CrossRef]
- Haag, M.; Marsden, N. Exploring personas as a method to foster empathy in student IT design teams. Int. J. Technol. Des. Educ. 2019, 29, 565–582. [Google Scholar] [CrossRef]
- Ueberham, M.; Schlink, U. Wearable sensors for multifactorial personal exposure measurements—A ranking study. Environ. Int. 2018, 121, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.H.; Crabtree, D.; Bilzon, J.; Walsh, N. The validity of wireless iButtons® and thermistors for human skin temperature measurement. Physiol. Meas. 2009, 31, 95. [Google Scholar] [CrossRef]
- Bailey, E.; Fuhrmann, C.; Runkle, J.; Stevens, S.; Brown, M.; Sugg, M. Wearable sensors for personal temperature exposure assessments: A comparative study. Environ. Res. 2020, 180, 108858. [Google Scholar] [CrossRef]
- Dumas, J.; Jagger, M.; Kintziger, K. Where to wear ibuttons: Individual level temperature and humidity observations for public health surveillance. In Proceedings of the American Meteorological Society Annual Meeting, New Orleans, LA, USA, 9–14 January 2016. [Google Scholar]
- Terando, A.J.; Youngsteadt, E.; Meineke, E.K.; Prado, S.G. Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements. Ecol. Evol. 2017, 7, 9890–9904. [Google Scholar] [CrossRef]
- Kuras, E.R.; Hondula, D.M.; Betzel, S.; Dastan, C.; Eneboe, J.; Kaml, M.; Munoz, M.; Rohan-Kohl, L.; Sevig, M.; Singh, M.; et al. Investigating the Individual Experience in Extreme Heat; University of Colorado Boulder: Boulder, CO, USA, 2015. [Google Scholar]
- Zippenfenig, P. Open-Meteo.com Weather API. Available online: https://doi.org/10.5281/zenodo.7970649 (accessed on 5 September 2024).
- Horel, J.; Splitt, M.; Dunn, L.; Pechmann, J.; White, B.; Ciliberti, C.; Lazarus, S.; Slemmer, J.; Zaff, D.; Burks, J. Mesowest: Cooperative Mesonets in the Western United States. Bull. Am. Meteorol. Soc. 2002, 83, 211–225. [Google Scholar] [CrossRef]
- Koo, S.; Chae, Y. Wearable technology in fashion. In Leading Edge Technologies in Fashion Innovation: Product Design and Development Process from Materials to the End Products to Consumers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 35–57. [Google Scholar]
- Silina, Y.; Haddadi, H. New directions in jewelry: A close look at emerging trends & developments in jewelry-like wearable devices. In Proceedings of the 2015 ACM International Symposium on Wearable Computers, Osaka, Japan, 7–11 September 2015; pp. 49–56. [Google Scholar]
- Rantala, I.; Colley, A.; Häkkilä, J. Smart jewelry: Augmenting traditional wearable self-expression displays. In Proceedings of the 7th ACM International Symposium on Pervasive Displays, Munich, Germany, 6–8 June 2018; pp. 1–8. [Google Scholar]
- Arora, J.; Mathur, K.; Saini, A.; Parnami, A. Gehna: Exploring the design space of jewelry as an input modality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Xue, Q.S.; Liu, Y.; Breda, J.; Springston, M.; Iyer, V.; Patel, S. Thermal Earring: Low-power Wireless Earring for Longitudinal Earlobe Temperature Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2024, 7, 1–28. [Google Scholar] [CrossRef]
Sensor Model–Vendor | Parameters Monitored | Range | Accuracy | Resolution | Drift | Response Time |
---|---|---|---|---|---|---|
MX2302A Onset | Temperature | −40 to 70 C (−40 to 158 °F) | ±0.25 C from −40 to 0 C (±0.45 °F from −40 to 32 °F) | 0.02 C (0.036 °F) | <0.01 C (0.018 °F) per year | ~3 min |
Relative Humidity | 0–100% RH, −40 to 70 C (−40 to 158 °F) | ±2.5% from 10% to 90% | 0.01% | <1% per year | ~15 s | |
DS1923 iButton Hygrochron- Analog Devices | Temperature | −20 to 85 C (−4 to 185 °F) | ±0.5 C from −40 to 0 C (± from −40 to 32 °F) | 8-bit mode: 0.5 C; 16-bit mode 0.0625 C (0.036 °F) | 130 s | N/A |
Relative Humidity | 0–100% RH | ±0.5%RH | 8-bit mode: 0.64%RH; 12-bit mode: 0.04%RH | 30 s | <1% per year | |
DS1921G-F5 iButton Thermochron-Analog Devices | Temperature | −40 to 85 C (−40 to 185 °F) | ±1 C from −30 to 70 C (± from −22 to 158 °F) | 0.5 C | 130 s | NA |
Shield | Mean Bias (F) | Std Dev (F) | IQR * (F) | RMSE * (F) | * | t-Stat | p-Value | Cohen’s d |
---|---|---|---|---|---|---|---|---|
Circle Gill | 1.8721 | 0.8105 | 1.1575 | 2.0397 | 0.9281 | −55.7225 | 0 | 0.2404 |
Large Earring | 1.9557 | 0.8625 | 1.2658 | 2.1371 | 0.9211 | −54.7043 | 0 | 0.2533 |
Small Earring | 2.0344 | 0.7374 | 0.9315 | 2.1637 | 0.9191 | −66.5575 | 0 | 0.2621 |
Square Gill | 2.1752 | 1.0458 | 1.6075 | 2.4131 | 0.8994 | −50.1799 | 0 | 0.2781 |
Cup with no holes | 4.5273 | 2.8225 | 3.9250 | 5.3337 | 0.5086 | −38.6960 | 0 | 0.5632 |
Fob 1921 | 4.7747 | 2.8874 | 3.8750 | 5.5786 | 0.4624 | −39.8930 | 0 | 0.5716 |
Cup with holes | 4.7870 | 2.3766 | 3.1150 | 5.3436 | 0.5067 | −48.5929 | 0 | 0.6005 |
Fob 1923 | 5.6630 | 3.0131 | 3.8988 | 6.4135 | 0.2894 | −45.3412 | 0 | 0.6757 |
Comparison | F-Statistic | p-Value (p < 0.05) |
---|---|---|
Fob 1921 vs. Cup Holes | 0.0064 | 0.9364 |
Fob 1921 vs. Cup No Holes | 2.1854 | 0.1396 |
Large Earring vs. Small Earring | 2.8023 | 0.0944 |
Cup Holes vs. Cup No Holes | 2.8852 | 0.0897 |
Large Earring vs. Circle Gill | 2.9045 | 0.0886 |
Fob 1921 vs. Small Earring | 492.0842 | 0 |
Fob 1923 vs. Small Earring | 796.3439 | 0 |
Fob 1921 vs. Circle Gill | 545.1739 | 0 |
Fob 1923 vs. Circle Gill | 859.0954 | 0 |
Cup No Holes vs. Small Earring | 424.9752 | 0 |
Cup Holes vs. Circle Gill | 784.3122 | 0 |
Cup Holes vs. Small Earring | 712.1606 | 0 |
Cup No Holes vs. Circle Gill | 475.8060 | 0 |
Shield | Mean Bias (F) | Std Dev (F) | IQR * (F) | RMSE * (F) | * | t-Stat | p-Value | Cohen’s d |
---|---|---|---|---|---|---|---|---|
Large Earring | 1.6675 | 0.8376 | 1.0885 | 1.8653 | 0.9370 | −34.1362 | 0 | 0.2186 |
Circle Gill | 1.8996 | 0.9131 | 1.5125 | 2.1070 | 0.9196 | −35.6704 | 0 | 0.2488 |
Small Earring | 2.0182 | 0.8729 | 1.1877 | 2.1983 | 0.9125 | −39.6430 | 0 | 0.2647 |
Square Gill | 2.1904 | 1.0659 | 1.6800 | 2.4352 | 0.8926 | −35.2369 | 0 | 0.2855 |
Cup with No Holes | 3.0322 | 1.6363 | 1.6375 | 3.4442 | 0.7852 | −31.7751 | 0 | 0.3893 |
Cup with Holes | 3.8067 | 1.8293 | 1.9075 | 4.2221 | 0.6771 | −35.6820 | 0 | 0.4816 |
Fob 1921 | 5.7537 | 3.4811 | 6.1025 | 6.7217 | 0.181703 | −28.3399 | 0 | 0.6868 |
Fob 1923 | 6.6682 | 3.6654 | 6.5655 | 7.6062 | −0.047811 | −31.1932 | 0 | 0.7929 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habeeb, D.; Devajji, R.; Polak, N.; Unabia, G.; Urbina, O. Design and Evaluation of Wearable Solar Radiation Shields for Enhanced Personal Heat Exposure Monitoring. Sensors 2025, 25, 945. https://doi.org/10.3390/s25030945
Habeeb D, Devajji R, Polak N, Unabia G, Urbina O. Design and Evaluation of Wearable Solar Radiation Shields for Enhanced Personal Heat Exposure Monitoring. Sensors. 2025; 25(3):945. https://doi.org/10.3390/s25030945
Chicago/Turabian StyleHabeeb, Dana, Rahul Devajji, Nick Polak, Greatzel Unabia, and Oscar Urbina. 2025. "Design and Evaluation of Wearable Solar Radiation Shields for Enhanced Personal Heat Exposure Monitoring" Sensors 25, no. 3: 945. https://doi.org/10.3390/s25030945
APA StyleHabeeb, D., Devajji, R., Polak, N., Unabia, G., & Urbina, O. (2025). Design and Evaluation of Wearable Solar Radiation Shields for Enhanced Personal Heat Exposure Monitoring. Sensors, 25(3), 945. https://doi.org/10.3390/s25030945