Effects of Sensor-Based, Site-Specific Nitrogen Fertilizer Application on Crop Yield, Nitrogen Balance, and Nitrogen Efficiency
Abstract
:1. Introduction
1.1. Spatial Variability of Cropland
1.2. Research Needs
1.3. Study Aims
2. Materials and Methods
2.1. Site and Weather Conditions
2.2. Farm Management
2.3. N Fertilization Systems
2.3.1. Reference Fertilization System GFO, UA Method
2.3.2. Online + Map-Overlay VRA Method
2.4. Experimental Design
2.5. Crop Yield and Protein Data Collection
2.6. N Balancing
2.7. Statistical Analysis
3. Results
3.1. Field A1
3.2. Field B1
3.3. Field C1
3.4. Field C2
4. Discussion
4.1. Site Selection
4.2. Discussion of Methods
4.3. Discussion of Results
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittermayer, M.; Gilg, A.; Maidl, F.-X.; Nätscher, L.; Hülsbergen, K.-J. Site-specific nitrogen balances based on spatially variable soil and plant properties. Precis. Agric. 2021, 22, 1416–1436. [Google Scholar] [CrossRef]
- Schuster, J.; Hagn, L.; Mittermayer, M.; Maidl, F.-X.; Hülsbergen, K.-J. Using Remote and Proximal Sensing in Organic Agriculture to Assess Yield and Environmental Performance. Agronomy 2023, 13, 1868. [Google Scholar] [CrossRef]
- Arriaga, F.; Lowery, B. Erosion and Productivity. In Encyclopedia of Water Science, 2nd ed.; Stanley, W., Ed.; CRC Press LLC: Boca Raton, MA, USA, 2007; ISBN 9781351249812. [Google Scholar]
- Balasubramanian, A. Soil Forming Processes, Centre for Advanced Studies in Earth Science. University of Mysore: Mysore, India, 2017. [Google Scholar]
- Basso, B.; Fiorentino, C.; Cammarano, D.; Schulthess, U. Variable rate nitrogen fertilizer response in wheat using remote sensing. Precis. Agric. 2016, 17, 168–182. [Google Scholar] [CrossRef]
- Mittermayer, M.; Maidl, F.-X.; Nätscher, L.; Hülsbergen, K.-J. Analysis of site-specific N balances in heterogeneous croplands using digital methods. Eur. J. Agron. 2022, 133, 126442. [Google Scholar] [CrossRef]
- Feiffer, A.; Jasper, J.; Leithold, P.; Feiffer, P. Effects of N-Sensor based variable rate N fertilization on combine harvest. In Proceedings of the Precision Agriculture’07, 6th European Conference on Precision Agriculture, Skiathos, Greece, 3–6 June 2007; Stafford, J.V., Ed.; Wageningen Academic Publition: Wageningen, The Netherlands, 2007. ISBN 9789086866038. [Google Scholar]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Gobbo, S.; de Antoni Migliorati, M.; Ferrise, R.; Morari, F.; Furlan, L.; Sartori, L. Evaluation of different crop model-based approaches for variable rate nitrogen fertilization in winter wheat. Precis. Agric. 2022, 23, 1922–1948. [Google Scholar] [CrossRef]
- Guerrero, A.; de Neve, S.; Mouazen, A.M. Data fusion approach for map-based variable-rate nitrogen fertilization in barley and wheat. Soil Tillage Res. 2021, 205, 104789. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Yuan, F.; Ata-UI-Karim, S.T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Evaluation of Variable Application Rate of Fertilizers Based on Site-Specific Management Zones for Winter Wheat in Small-Scale Farming. Agronomy 2023, 13, 2812. [Google Scholar] [CrossRef]
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. Precis. Agric. 2021, 22, 364–386. [Google Scholar] [CrossRef]
- Pahlmann, I.; Böttcher, U.; Kage, H. Developing and testing an algorithm for site-specific N fertilization of winter oilseed rape. Comput. Electron. Agric. 2017, 136, 228–237. [Google Scholar] [CrossRef]
- Spicker, A.B. Entwicklung von Verfahren der Teilflächenspezifischen Stickstoffdüngung zu Wintergerste (Hordeum vulgare L.) und Winterraps (Brassica napus L.) auf Grundlage Reflexionsoptischer Messungen: (Development of Sensorbased Nitrogen Fertilization Systems for Oilseed Rape (Brassica napus L.) and Winter Wheat (Hordeum vulgare L.)). Ph.D. Thesis, Technische Universität München, Freising-Weihenstephan, Germany, 2017. [Google Scholar]
- Delgado, J.A.; Khosla, R.; Bausch, W.C.; Westfall, D.G.; Inman, D.J. Nitrogen fertilizer management based on site-specific management zones reduces potential for nitrate leaching. J. Soil Water Conserv. 2005, 60, 402–410. [Google Scholar]
- Li, A.; Duval, B.D.; Anex, R.; Scharf, P.; Ashtekar, J.M.; Owens, P.R.; Ellis, C. A Case Study of Environmental Benefits of Sensor-Based Nitrogen Application in Corn. J. Environ. Qual. 2016, 45, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Späti, K.; Huber, R.; Finger, R. Benefits of Increasing Information Accuracy in Variable Rate Technologies. Ecol. Econ. 2021, 185, 107047. [Google Scholar] [CrossRef]
- Robertson, M.J.; Llewellyn, R.S.; Mandel, R.; Lawes, R.; Bramley, R.G.V.; Swift, L.; Metz, N.; O’Callaghan, C. Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precis. Agric. 2012, 13, 181–199. [Google Scholar] [CrossRef]
- Kuhlmann, F.; Neumann, S. Ein entscheidungstheoretischer Ansatz zur Bewertung des praktischen Nutzens der teilflächenspezifischen Stickstoffdüngung zu Getreide (A decision-theoretical approach to the evaluation of the practical benefits ofsite-specific nitrogen fertilization to cereals). In Berichte über Landwirtschaft: Zeitschrift für Agrarpolitik und Landwirtschaft; Bundesministerium für Ernährung und Landwirtschaft: Bonn, Germany, 2011; pp. 232–266. [Google Scholar]
- Khosla, R.; Fleming, K.; Delgado, J.A.; Shaver, T.M.; Westfall, D.G. Use of site-specific management zones to improve nitrogen management for precision agriculture. J. Soil Water Conserv. 2002, 57, 513–518. [Google Scholar]
- Hornung, A.; Khosla, R.; Reich, R.; Westfall, D.G. Evaluation of site-specific management zones: Grain yield and nitrogen use efficiency. In Precision Agriculture; Stafford, J.V., Werner, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2003; pp. 297–302. ISBN 978-90-8686-514-7. [Google Scholar]
- Ebertseder, T.; Gutser, R.; Hege, U.; Bandhuber, R.; Schmidhalter, U. Strategies for site-specific nitrogen fertilization with respect to long-term environmental demands. In Precision Agriculture’03, 4th European Conference on Precision Agriculture, Berlin, Germany; Stafford, J.V., Werner, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2003. [Google Scholar]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Chapter Four—Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 175–245. ISBN 0065-2113. [Google Scholar]
- Stamatiadis, S.; Schepers, J.S.; Evangelou, E.; Tsadilas, C.; Glampedakis, A.; Glampedakis, M.; Dercas, N.; Spyropoulos, N.; Dalezios, N.R.; Eskridge, K. Variable-rate nitrogen fertilization of winter wheat under high spatial resolution. Precis. Agric. 2018, 19, 570–587. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yuan, F.; Cheng, S.; Cui, Z. Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis of Winter Wheat Nitrogen Status. Agronomy 2018, 8, 201. [Google Scholar] [CrossRef]
- Evangelou, E.; Stamatiadis, S.; Schepers, J.S.; Glampedakis, A.; Glampedakis, M.; Dercas, N.; Tsadilas, C.; Nikoli, T. Evaluation of sensor-based field-scale spatial application of granular N to maize. Precis. Agric. 2020, 21, 1008–1026. [Google Scholar] [CrossRef]
- Maidl, F.X.; Huber, G.; Schächtl, J. Strategies for site specific nitrogen fertilisation in winter wheat. In Proceedings of the 7th International Conference on Precision Agriculture and Other Precision Resources Management, Minneapolis; Preciscion Agriculture Center: St. Paul, MN, USA, 2004. [Google Scholar]
- Ebertseder, T.; Schmidhalter, U.; Gutser, R.; Hege, U.; Jungert, S. Evaluation of mapping and on-line nitrogen fertilizer application strategies in multi-year and multi-location static field trials for increasing nitrogen use efficiency of cereals. In Proceedings of the Precision Agriculture ’05, 5th European Conference on Precision Agriculture, Uppsala, Sweden, 9–12 June 2005; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005. ISBN 978-907699869-5. [Google Scholar]
- Maidl, F.-X. Method for Ascertaining the Fertilizer Requirement, in particular the Nitrogen Fertilizer Requirement, and Apparatus for carrying out the Method. U.S. Patent No. 10,007,640, 26 June 2018. [Google Scholar]
- Weckesser, F.; Leßke, F.; Luthardt, M.; Hülsbergen, K.-J. Conceptual Design of a Comprehensive Farm Nitrogen Management System. Agronomy 2021, 11, 2501. [Google Scholar] [CrossRef]
- Hagn, L.; Schuster, J.; Mittermayer, M.; Hülsbergen, K.-J. A new method for satellite-based remote sensing analysis of plant-specific biomass yield patterns for precision farming applications. Precis. Agric. 2024, 25, 2801–2830. [Google Scholar] [CrossRef]
- Stettmer, M.; Mittermayer, M.; Maidl, F.-X.; Schwarzensteiner, J.; Hülsbergen, K.-J.; Bernhardt, H. Three Methods of Site-Specific Yield Mapping as a Data Source for the Delineation of Management Zones in Winter Wheat. Agriculture 2022, 12, 1128. [Google Scholar] [CrossRef]
- Zhang, J.; Guerrero, A.; Mouazen, A.M. Map-based variable-rate manure application in wheat using a data fusion approach. Soil Tillage Res. 2021, 207, 104846. [Google Scholar] [CrossRef]
- Xiang, L.I.; Yu-chun, P.A.; Zhong-qiang, G.E.; Chun-jiang, Z. Delineation and Scale Effect of Precision Agriculture Management Zones Using Yield Monitor Data Over Four Years. Agric. Sci. China 2007, 6, 180–188. [Google Scholar] [CrossRef]
- Moral, F.J.; Terrón, J.M.; Da Silva, J.M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Cheng, E.; Zhang, B.; Peng, D.; Zhong, L.; Le, Y.; Liu, Y.; Xiao, C.; Li, C.; Li, X.; Chen, Y.; et al. Wheat yield estimation using remote sensing data based on machine learning approaches. Front. Plant Sci. 2022, 13, 1090970. [Google Scholar] [CrossRef]
- Tanabe, R.; Matsui, T.; Tanaka, T.S. Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery. Field Crops Res. 2023, 291, 108786. [Google Scholar] [CrossRef]
- Ortega, R.A.; Santibáñez, O.A. Determination of management zones in corn (Zea mays L.) based on soil fertility. Comput. Electron. Agric. 2007, 58, 49–59. [Google Scholar] [CrossRef]
- Peralta, N.R.; Costa, J.L. Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Comput. Electron. Agric. 2013, 99, 218–226. [Google Scholar] [CrossRef]
- Gozdowski, D.; Stępień, M.; Samborski, S.; Dobers, E.S.; Szatyłowicz, J.; Chormański, J. Determination of the Most Relevant Soil Properties for the Delineation of Management Zones in Production Fields. Commun. Soil Sci. Plant Anal. 2014, 45, 2289–2304. [Google Scholar] [CrossRef]
- Heijting, S.; de Bruin, S.; Bregt, A.K. The arable farmer as the assessor of within-field soil variation. Precis. Agric. 2011, 12, 488–507. [Google Scholar] [CrossRef]
- Servadio, P.; Bergonzoli, S.; Verotti, M. Delineation of management zones based on soil mechanical-chemical properties to apply variable rates of inputs throughout a field (VRA). Eng. Agric. Environ. Food 2017, 10, 20–30. [Google Scholar] [CrossRef]
- Welsh, J.; Wood, G.; Godwin, R.; Taylor, J.; Earl, R.; Blackmore, S.; Knight, S. Developing Strategies for Spatially Variable Nitrogen Application in Cereals, Part II: Wheat. Biosyst. Eng. 2003, 84, 495–511. [Google Scholar] [CrossRef]
- Morari, F.; Zanella, V.; Sartori, L.; Visioli, G.; Berzaghi, P.; Mosca, G. Optimising durum wheat cultivation in North Italy: Understanding the effects of site-specific fertilization on yield and protein content. Precis. Agric. 2018, 19, 257–277. [Google Scholar] [CrossRef]
- Qaswar, M.; Bustan, D.; Mouazen, A.M. Economic and Environmental Assessment of Variable Rate Nitrogen Application in Potato by Fusion of Online Visible and Near Infrared (Vis-NIR) and Remote Sensing Data. Soil Syst. 2024, 8, 66. [Google Scholar] [CrossRef]
- Sela, S.; van Es, H.M.; Moebius-Clune, B.N.; Marjerison, R.D.; Melkonian, J.; Moebius-Clune, D.; Schindelbeck, R.; Gomes, S. Adapt-N Outperforms Grower-Selected Nitrogen Rates in Northeastand Midwestern United States Strip Trials. Agron. J. 2016, 108, 1726–1734. [Google Scholar] [CrossRef]
- Pramod Pawase, P.; Madhukar Nalawade, S.; Ashok Walunj, A.; Balasaheb Bhanage, G.; Bhaskar Kadam, P.; Durgude, A.G.; Patil, M.R. Comprehensive study of on-the-go sensing and variable rate application of liquid nitrogenous fertilizer. Comput. Electron. Agric. 2024, 216, 108482. [Google Scholar] [CrossRef]
- Solie, J.B.; Monroe, A.D.; Raun, W.R.; Stone, M.L. Generalized Algorithm for Variable-Rate Nitrogen Application in Cereal Grains. Agron. J. 2012, 104, 378–387. [Google Scholar] [CrossRef]
- Tagarakis, A.C.; Ketterings, Q.M. Proximal sensor-based algorithm for variable rate nitrogen application in maize in northeast U.S.A. Comput. Electron. Agric. 2018, 145, 373–378. [Google Scholar] [CrossRef]
- Schächtl, J. Sensorgestützte Bonitur von Aufwuchs und Stickstoffversorgung bei Weizen- und Kartoffelbeständen (Sensor-Based Assessment of Growth and Nitrogen Nutrition in Wheat and Potato Stands). Ph.D. Thesis, Technische Universität München, Freising-Weihenstephan, Germany, 2004. [Google Scholar]
- Morari, F.; Zanella, V.; Gobbo, S.; Bindi, M.; Sartori, L.; Pasqui, M.; Mosca, G.; Ferrise, R. Coupling proximal sensing, seasonal forecasts and crop modelling to optimize nitrogen variable rate application in durum wheat. Precis. Agric. 2021, 22, 75–98. [Google Scholar] [CrossRef]
- Prücklmaier, J.X. Feldexperimentelle Analysen zur Ertragsbildung und Stickstoffeffizienz bei Organisch-Mineralischer Düngung auf Heterogenen Standorten und Möglichkeiten zur Effizienzsteigerung Durch Computer- und Sensorgestützte Düngesysteme: (Field Experimental Analyses of Yield Formation And nitrogen Efficiency with Organic-Mineral Fertilization on Heterogeneous Sites and Possibilities for Increasing Efficiency Through Computer- and Sensor-Based Fertilization Systems). Ph.D. Thesis, Technische Universität München, Berlin, Germany, 2020. [Google Scholar]
- Mittermayer, M.; Donauer, J.; Kimmelmann, S.; Maidl, F.-X.; Hülsbergen, K.-J. Effects of different nitrogen fertilization systems on crop yield and nitrogen use efficiency—Results of a field experiment in southern Germany. Heliyon 2024, 10, e28065. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, A.; Gandorfer, M. Adoption of digital technologies in agriculture—An inventory in a european small-scale farming region. Precis. Agric. 2023, 24, 68–91. [Google Scholar] [CrossRef]
- Heiß, A.; Paraforos, D.S.; Sharipov, G.M.; Griepentrog, H.W. Modeling and simulation of a multi-parametric fuzzy expert system for variable rate nitrogen application. Comput. Electron. Agric. 2021, 182, 106008. [Google Scholar] [CrossRef]
- Al-Gaadi, K.A.; Tola, E.; Alameen, A.A.; Madugundu, R.; Marey, S.A.; Zeyada, A.M.; Edrris, M.K. Control and monitoring systems used in variable rate application of solid fertilizers: A review. J. King Saud Univ.-Sci. 2023, 35, 102574. [Google Scholar] [CrossRef]
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef]
- GFO. DüV. Verordnung, über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der Guten Fachlichen Praxis Beim Düngen (Düngeverordnung-DüV). BGBl. S.846, 2020 (German Fertilizer Application Ordinance); Bundesministeriums der Justiz sowie des Bundesamts für Justiz: Berlin, Germany, 2020; Available online: https://www.gesetze-im-internet.de/d_v_2017/D%C3%BCV.pdf (accessed on 24 January 2025).
- AHDB. The Growth Stages of Cereals. Available online: https://ahdb.org.uk/knowledge-library/the-growth-stages-of-cereals (accessed on 20 November 2023).
- tec5. Optical Spectroscopy—Modern Process Analytical Technologies. Available online: https://tec5.com/en/technology/optical-spectroscopy/ (accessed on 18 August 2023).
- Guyot, G.; Baret, F.; Major, D.J. High spectral resolution: Determination of spectral shifts between thered and infrared. Int. Arch. Photogramm. Remote Sens. 1988, 750–760. [Google Scholar]
- Daughtry, C. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Strenner, M.; Maidl, F.-X. Comparison of different Vegetation Indices and their Suitability to describe Biomass, N-Content and N-Uptake in Winter Wheat for Precision Farming. In Proceedings of the 12th International Conference on Precision Agriculture and Other Precision Resources Management, Hyatt Regency, Sacramento, CA, USA, 20–23 July 2014. [Google Scholar]
- Prey, L.; Schmidhalter, U. Sensitivity of Vegetation Indices for Estimating Vegetative N Status in Winter Wheat. Sensors 2019, 19, 3712. [Google Scholar] [CrossRef]
- Maidl, F.-X.; Kern, A.; Kimmelmann, S.; Hülsbergen, K.-J. Sensorgestützte teilflächenspezifische Stickstoffdüngung mit wissenschaftlich begründeten Algorithmen. (Sensor-based site-specific nitrogen fertilization with scientifically validated algorithms). In Kongressband 2022 Halle (Saale): Vorträge zum Generalthema: Sensorsysteme in der Landwirtschaft—Chancen und Herausforderungen. Conference Proceedings. Presentations on the General Topic: Sensor Systems in Agriculture—Opportunities and Challenges; VDLUFA: Darmstadt, Germany, 2022; ISBN 9783941273344. [Google Scholar]
- Wintersteiger. Wintersteiger Delta Plot Combine. Available online: https://www.wintersteiger.com/upload/files/6242.pdf (accessed on 24 January 2025).
- Knöferl, R.; Diepolder, M.; Offenberger, K.; Raschacher, S.; Brandl, M.; Kavka, A.; Hippich, L.; Schmücker, R.; Sperger, C.; Kalmach, S. Leitfaden für die Düngung von Acker- und Grünland, Freising, Weihenstephan. 2022. Available online: https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/2022_08_iab_info_gelbes_heft.pdf (accessed on 23 April 2024).
- Faraway, J.J. Practical Regression and ANOVA Using R; University of Bath: Bath, UK, 2002. [Google Scholar]
- Schuster, J.; Mittermayer, M.; Maidl, F.-X.; Nätscher, L.; Hülsbergen, K.-J. Spatial variability of soil properties, nitrogen balance and nitrate leaching using digital methods on heterogeneous arable fields in southern Germany. Precis. Agric. 2023, 24, 647–676. [Google Scholar] [CrossRef]
- López-Lozano, R.; Casterad, M.A.; Herrero, J. Site-specific management units in a commercial maize plot delineated using very high resolution remote sensing and soil properties mapping. Comput. Electron. Agric. 2010, 73, 219–229. [Google Scholar] [CrossRef]
- Heil, K.; Klöpfer, C.; Hülsbergen, K.-J.; Schmidhalter, U. Description of Meteorological Indices Presented Based on Long-Term Yields of Winter Wheat in Southern Germany. Agriculture 2023, 13, 1904. [Google Scholar] [CrossRef]
- Martinez-Feria, R.A.; Basso, B. Unstable crop yields reveal opportunities for site-specific adaptations to climate variability. Sci. Rep. 2020, 10, 2885. [Google Scholar] [CrossRef]
- Kage, H.; Räbiger, T.; Sieling, K. Stickstoffdüngung zu Winterraps und Winterweizen. Berichte über Landwirtschaft—Zeitschrift für Agrarpolitik und Landwirtschaft, Aktuelle Beiträge; Bundesministerium für Ernährung und Landwirtschaft: Berlin, Germany, 2022. [Google Scholar] [CrossRef]
- Küstermann, B.; Christen, O.; Hülsbergen, K.-J. Modelling nitrogen cycles of farming systems as basis of site- and farm-specific nitrogen management. Agric. Ecosyst. Environ. 2010, 135, 70–80. [Google Scholar] [CrossRef]
- McLellan, E.L.; Cassman, K.G.; Eagle, A.J.; Woodbury, P.B.; Sela, S.; Tonitto, C.; Marjerison, R.D.; van Es, H.M. The Nitrogen Balancing Act: Tracking the Environmental Performance of Food Production. Bioscience 2018, 68, 194–203. [Google Scholar] [CrossRef]
- León, J.; Castillo, M.C.; Gayubas, B. The hypoxia-reoxygenation stress in plants. J. Exp. Bot. 2021, 72, 5841–5856. [Google Scholar] [CrossRef]
- Arata, A.F.; Dinolfo, M.I.; Martínez, M.; Lázaro, L. Effects of waterlogging during grain filling on yield components, nitrogen uptake and grain quality in bread wheat. Cereal Res. Commun. 2019, 47, 42–52. [Google Scholar] [CrossRef]
- DLUFA-Methodenbuch III. Verband deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA): Methode 4.1.2 Bestimmung von Rohprotein mittels DUMAS-Verbrennungsmethode. In Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik, 3rd ed.; VDLUFA-Verl: Darmstadt, Germany, 2004. [Google Scholar]
Experimental Site | Research Station Dürnast | Research Station Roggenstein | Commercial Farm Burghausen | Commercial Farm Burghausen |
---|---|---|---|---|
Field | A1 | B1 | C1 | C2 |
Size (ha) | 4.7 | 27.0 | 7.5 | 9.5 |
Region | 30 km north of Munich | 20 km west of Munich | 80 km east of Munich | 80 km east of Munich |
Soil texture | Loam | Sandy loam | Silty loam | Silty loam |
Soil type | Cambisol | Cambisol/gley | Cambisol | Cambisol |
SOC (% DM) | 1.4 (1.2–2.1) | 3.2 (2.3–8.7) a | 1.3 (1.1–2.1) | 1.5 (1.4–1.8) |
TN (% DM) | 0.16 (0.11–0.23) | 0.22 (0.10–0.34) | 0.15 (0.12–0.22) | 0.15 (0.13–0.19) |
pH (CaCl2) | 7.0 (6.2–7.3) | 6.5 (6.1–7.0) | 6.5 (6.0–7.2) | 6.5 (5.9–7.0) |
PCAL (mg (100 g)−1) b | 5.6 (3.4–12.4) | 4.8 (4.0–5.4) | 7.6 (3.1–31.7) | 4.1 (2.2–7.6) |
KCAL (mg (100 g)−1) c | 13.9 (9.1–26.1) | 17 (15.0–20.0) | 12.6 (7.0–25.3) | 7.6 (2.9–15.0) |
Height | 479 (472–487) | 517 (515–519) | 482 (480–484) | 474 (470–478) |
Farming system | Arable farming | Arable farming | Mixed farming | Mixed farming |
Coordinates | 48°26′4″ N 11°44′16″ E | 48°10′47″ N 11°18’50″ E | 48°7′51″ N 12°44′5″ E | 48°7′58″ N 12°44′22″ E |
Yield Zone | Fertilization System | Target Yield | N | Yield | Protein Content | Plant N Uptake a | N Fertilization b | N Balance | N Efficiency |
---|---|---|---|---|---|---|---|---|---|
(t ha−1) | (t ha−1) | (%) | (kg ha−1) | (kg ha−1) | (kg ha−1) | ||||
High-yield | UA | 8.0 | 10 | 10.4 | 12.4 | 230 | 155 | −75 | 1.48 |
zone | VRA | 9.0 | 19 | 10.4 | 12.2 | 230 | 160 | −70 | 1.46 |
Medium-yield | UA | 8.0 | 12 | 10.1 * | 10.5 | 198 | 155 | −43 * | 1.28 ** |
zone | VRA | 8.0 | 33 | 9.8 * | 10.9 | 196 | 134 | −64 * | 1.46 ** |
Low-yield | UA | 8.0 | 11 | 9.7 | 10.3 | 191 | 155 | −36 ** | 1.23 ** |
zone | VRA | 7.0 | 18 | 9.5 | 10.7 | 188 | 135 | −53 ** | 1.38 ** |
Median | UA | 34 | 10.1 | 10.6 | 198 | 155 | 1.28 | ||
Median | VRA | 70 | 9.8 | 11.0 | 201 | 140 | 1.43 |
Yield Zone | Fertilization System | Target Yield | N | Yield | Protein Content | Plant N Uptake a | N Fertilization b | N Balance | N Efficiency |
---|---|---|---|---|---|---|---|---|---|
(t ha−1) | (t ha−1) | (%) | (kg ha−1) | (kg ha−1) | (kg ha−1) | ||||
High-yield | UA | 8.0 | 30 | 8.2 | 9.5 *** | 142 * | 155 | 13 *** | 0.92 *** |
zone | VRA | 9.0 | 49 | 8.4 | 9.8 *** | 150 * | 177 | 28 *** | 0.84 *** |
Medium-yield | UA | 8.0 | 39 | 8.6 | 9.8 *** | 153 *** | 155 | 2 *** | 0.99 *** |
zone | VRA | 8.0 | 41 | 8.6 | 10.4 *** | 159 *** | 192 | 34 *** | 0.82 *** |
Low-yield | UA | 8.0 | 31 | 8.8 | 10.8 | 170 | 155 | −15 *** | 1.10 *** |
zone | VRA | 7.0 | 32 | 8.7 | 11.3 | 177 | 198 | 22 *** | 0.89 *** |
Median | UA | 100 | 8.5 | 9.9 | 153 | 155 | 2 | 0.99 | |
Median | VRA | 122 | 8.5 | 10.2 | 155 | 189 | 28 | 0.85 |
Yield Zone | Fertilization System | Target Yield | N | Yield | Protein Content | Plant N Uptake a | N Fertilization b | N Balance | N Efficiency |
---|---|---|---|---|---|---|---|---|---|
(t ha−1) | (t ha−1) | (%) | (kg ha−1) | (kg ha−1) | (kg ha−1) | ||||
High-yield | UA | 9.0 | 14 | 9.3 | 11.3 | 189 * | 206 | 23 ** | 0.90 * |
Zone | VRA | 10.0 | 13 | 9.0 | 10.7 | 183 * | 178 | −7 ** | 1.00 * |
Medium-yield | UA | 9.0 | 8 | 9.3 | 11.7 | 189 | 206 | 17 ** | 0.90 ** |
Zone | VRA | 8.0 | 10 | 9.0 | 10.7 | 169 | 163 | −8 ** | 1.05 ** |
Low-yield | UA | 9.0 | 11 | 9.1 ** | 11.2 | 179 | 206 | 27 *** | 0.90 *** |
Zone | VRA | 7.0 | 9 | 8.8 ** | 10.5 | 164 | 164 | −1 *** | 1.00 *** |
Median | UA | 9.2 | 11.3 | 182 | 206 | 24 | 0.90 | ||
Median | VRA | 9.0 | 11.0 | 172 | 168 | −7 | 1.00 |
Yield Zone | Fertiliztion System | Target Yield | N | Yield | Protein Content | Plant N Uptake a | N Fertilization b | N Balance | N Efficency |
---|---|---|---|---|---|---|---|---|---|
(t ha−1) | (t ha−1) | (%) | (kg ha−1) | (kg ha−1) | (kg ha−1) | ||||
High-yield | UA | 8.5 | 7 | 10.9 | 9.3 | 187 | 216 | 29 ** | 0.90 ** |
zone | VRA | 9.0 | 9 | 10.3 | 9.2 | 178 | 253 | 73 ** | 0.70 ** |
Medium-yield | UA | 8.5 | 15 | 10.1 | 10.1 | 172 | 216 | 44 * | 0.80 * |
zone | VRA | 8.5 | 12 | 10.4 | 10.4 | 181 | 245 | 64 * | 0.70 * |
Low-yield | UA | 8.5 | 13 | 9.6 | 9.3 | 166 | 216 | 50 * | 0.80 |
zone | VRA | 8.0 | 10 | 9.6 | 9.5 | 163 | 228 | 67 * | 0.70 |
Median | UA | 35 | 10.1 | 9.3 | 170 | 216 | 46 | 0.80 | |
Median | VRA | 31 | 10.1 | 9.4 | 177 | 241 | 67 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagn, L.; Mittermayer, M.; Kern, A.; Kimmelmann, S.; Maidl, F.-X.; Hülsbergen, K.-J. Effects of Sensor-Based, Site-Specific Nitrogen Fertilizer Application on Crop Yield, Nitrogen Balance, and Nitrogen Efficiency. Sensors 2025, 25, 795. https://doi.org/10.3390/s25030795
Hagn L, Mittermayer M, Kern A, Kimmelmann S, Maidl F-X, Hülsbergen K-J. Effects of Sensor-Based, Site-Specific Nitrogen Fertilizer Application on Crop Yield, Nitrogen Balance, and Nitrogen Efficiency. Sensors. 2025; 25(3):795. https://doi.org/10.3390/s25030795
Chicago/Turabian StyleHagn, Ludwig, Martin Mittermayer, Andreas Kern, Stefan Kimmelmann, Franz-Xaver Maidl, and Kurt-Jürgen Hülsbergen. 2025. "Effects of Sensor-Based, Site-Specific Nitrogen Fertilizer Application on Crop Yield, Nitrogen Balance, and Nitrogen Efficiency" Sensors 25, no. 3: 795. https://doi.org/10.3390/s25030795
APA StyleHagn, L., Mittermayer, M., Kern, A., Kimmelmann, S., Maidl, F.-X., & Hülsbergen, K.-J. (2025). Effects of Sensor-Based, Site-Specific Nitrogen Fertilizer Application on Crop Yield, Nitrogen Balance, and Nitrogen Efficiency. Sensors, 25(3), 795. https://doi.org/10.3390/s25030795